Which to use: Classes or Structs in Classes? - class

So, I have a bit of a philosophical question in the realm of C++11 coding best practices.
When creating an application which essentially transforms data from one system to another. Should you define everything in classes, or use structs within a class?
Here is a more concrete example of what I am referring to.
For a typical class object. Should I create it this way:
class Contact {
std::string Name;
std::string Address;
:: :: ::
void Load();
void Save();
std::string OtherFunctions( std::string Name )
}
Or is it better to separate out the data from the class:
struct ContactInfo {
std::string Name;
std::string Address;
:: :: ::
}
class Contact {
ContactInfo data;
void Load();
void Save();
std::string OtherFunctions( std::string Name )
}
Several reason that I am contemplating the Struct over just doing in a class is the ability to transfer data between APIs. For example, the creation of these objects is done at a low level pure C++ application. But, at some point through the process, it is exposed to a managed C++ application and then finally consumed in a .NET application.
Secondly, as information is passed around from function to function, I am passing only the information and not the class object. With modern compilers, perhaps this point is mute, but logically to me, it seems better to pass data only than objects.
Thirdly, it separates class members needed to manage the object data from the data itself. So having a members like ErrorCode, ErrorMessage, etc, don't pollute what is considered data and what is not.
Am I off base here?
Is there a better way that I should be doing this type of activity?

Related

Ability to access Dart class from native code

I am in the process of migrating from Android/JNI to Flutter/Dart/FFI to build native apps. Currently in Android I have a Java class (ScanningHelper.java) which is modified during the program lifecycle. During native initialization, I send a jobject type using which in my C/C++ code, I am able to call different member functions or even access variables directly (depending on access).
Is something similar possible with Dart FFI? The closest I have come to is possibly creating a struct in native and then using multiple functions to set/get data from native. I though have a feeling that the amount of code to be written will be high including memory clean up on Dart every time a string/const char* is returned.
Appreciate any direction to accomplish something like below without needing to duplicate implementation across both languages.
// ScanningHelper.java
public class ScanningHelper {
private String _mediaStorageDirectory;
public void setMediaStorageDirectory(String path) { _mediaStorageDirectory = path; }
public String getAppMediaStorageDirectory() { return _mediaStorageDirectory; }
public double latitude;
public double longitude;
...
byte[] image1Bytes;
}
I have some standard methods defined like getStringFromObjectMethod which allows reuse across different classes and return types;
// JNIMethods.cpp
std::string mediaDirectory = JNIMethods::getStringFromObjectMethod(jniEnv,_scanningHelper,"getAppMediaStorageDirectory"));

CQRS Commands and Events as generic classes?

In most examples I saw, commands and events are represented as classes. That means you have to write a CorrectNameCommand class with name property and a NameCorrectedEvent class with name property. Given that both commands and events are serialized and deserialized in most cases and send to other parties (there goes the compile time type safety), what is the advantage of this explicit classes over a more generic class?
Example:
A Command class with a Name (that represents the type of the command), the key of the ag that should handle the command and an array of objects or name/value pairs for any other parameters.
An Event class essentially the same (perhaps we can put the shared parts in an CommandEventBase class).
The command (and event) handlers have now to check the name of the command (event) instead of its class type and have to rely on the correctness of the parameters in the list (like the deserializer has to rely that the serialized format is correct).
Is that a good approach? If yes, why is it not used in the samples and tutorials? If not, what are the problems?
Duplication
It's a fair point that when Commands and Events are serialized, compile-time safety is lost, but in a statically typed language, I'd still prefer strongly typed Command and Event types.
The reason for this is that it gives you a single piece of the code base responsible for interpreting message elements. Serialization tends to be quite (type-)safe; deserialization is where you may encounter problems.
Still, I'd prefer to deal with any such problems in a single place, instead of spread out over the entire code base.
This is particularly relevant for Events, since you may have multiple Event Handlers handling the same type of Event. If you treat events as weakly typed dictionaries, you'll need to duplicate the implementation of a Tolerant Reader in each and every Event Handler.
On the other hand, if you treat Events and Commands as strong types, your deserializer can be the single Tolerant Reader you'd have to maintain.
Types
All this said, I can understand why you, in languages like C# or Java, find that defining immutable DTOs for each and every message seems like a lot of overhead:
public sealed class CorrectNameCommand
{
private readonly string userId;
private readonly string newName;
public CorrectNameCommand(string userId, string newName)
{
this.userId = userId;
this.newName = newName;
}
public string UserId
{
get { return this.userId; }
}
public string NewName
{
get { return this.newName; }
}
public override bool Equals(object obj)
{
var other = obj as UserName;
if (other == null)
return base.Equals(obj);
return object.Equals(this.userId, other.userId)
&& object.Equals(this.newName, other.newName);
}
public override int GetHashCode()
{
return this.userId.GetHashCode() ^ this.newName.GetHashCode();
}
}
That, indeed, seems like a lot of work.
This is the reason that I these days prefer other languages for implementing CQRS. On .NET, F# is a perfect fit, because all of the above code boils down to this one-liner:
type CorrectNameCommand = { UserId : string; NewName : string }
That's what I'd do, instead of passing weakly typed dictionaries around. Last time I heard Greg Young talk about CQRS (NDC Oslo 2015), he seemed to have 'converted' to F# as well.

Passing variables across classes with objects

Alright so I've been continuing to learn about classes and oop languages. And am a bit confused.
If I was to have a separate class for player stats. And in that class I have some private ints and then some functions to change them publicly.
Say I want to change and get those ints From my main class. I make an object and assign them to local variables then I can call the local variables in my main script. Then update the variable in the stat class.
It seems a little silly that I have to make a local variable as well as a separate variable in a different class.
To me it would make sense to just be able to call the separate class in a new object whenever I wanted to access the variables in the stat class but I can't...
Let me know if this isn't clear as I can try to expand more.
Thanks
Ben
You do not have to make new variables in the "main" class ....
you can just use the getters and setters through the object that you created.
Also copying variables from player stats to main class is not a good idea because now you have to maintain two copies of same data, at least until you are in scope of main class. If not handled correctly it can also cause data inconsistencies.
Assuming you are using Java, you can do this.
public class PlayerStats{
private int var1=20;
public void setVar1(int var1){
this.var1=var1
}
public int getVar1(){
return var1
}
}
public class mainClass{
PlayerStats pStats = new PlayerStats();
pStats.getVar1();
pStats.setVar1(14);
System.out.println(pStats.getVar1());
}
Thanks for that answer definately cleared things up however, in the object created in mainClass if I create the object in one function how do I use it in another function in the same class?
Depends on how and if the two functions are connected and how central that object is to your class.
If the object is very central to class :
That is, you are using it almost in all the function, your class revolves around playing with that object, then you can create it at class level something along these lines
public class mainClass{
PlayerStats pStats = new PlayerStats();
public void function1() {
pStats.setVar1(14);
System.out.println(pStats.getVar1());
}
public void function2(int x) {
pStats.setVar1(x);
System.out.println(pStats.getVar1());
}
}
If two functions are not connected :
Just make a new object inside the function scope, if possible.
This is better than creating an object at class level, because the object becomes eligible for garbage collection after the function is finished executing. Whereas, the object created at class level stays in the memory as long as the object (instance of main class) is in the memory.
If two functions are connected, i.e you are calling one function from inside the second function :
you can just pass the object as an argument, something along these lines
public class mainClass{
public void function1() {
PlayerStats pStats = new PlayerStats();
pStats.setVar1(14);
function2(pStats)
}
public void function2(PlayerStats x) {
System.out.println(pStats.getVar1());
}
}
Also google dependency injection, it is an important concept, try to use it as often as possible. It produces good decoupled and testable design
There is so much more to say, people have written books on this topic, OO Design is an art in itself.

What is the point declaring variables at the end of class?

I saw multiple examples in MSDN that uses to declare the internal fields at the end of the class. What is the point?
I find this a little embarrassing, because each time Visual Studio adds a method it adds it to the end of the class, so there is need every time to move it...
class A
{
public A(){}
// Methods, Properties, etc ...
private string name;
}
class A
{
private string name;
public A(){}
// Methods, Properties, etc ...
}
In C++, it makes sense to put the public interface of the class at the top, so that any user of the class can open up your header file and quickly see what's available. By implication, protected and private members are put at the bottom.
In C# and Java, where interface and implementation are completely intertwined, people would probably not open your class's source code to see what's available. Instead they would rely on code completion or generated documentation. In that case, the ordering of the class members is irrelevant.
If it's obvious the variable has been declared, and the code is by way of an example, then arguably this gets you to the bit being demonstrated quicker - that's all I can think of.
Add-ins like ReSharper will allow you to standardise and automatically apply this layout at the touch of a key combination, by the way, if it is what you want.
Many programmers strive for self-documenting code that helps clients to understand it. In C++ class declaration, they would go from most important (i.e. what is probably most frequently inspected) to least important:
class Class {
public:
// First what interest all clients.
static Class FromFoobar(float foobar); // Named constructors in client code
// often document best
Class(); // "Unnamed" constructors.
/* public methods */
protected:
// This is only of interest to those who specialize
// your class.
private:
// Of interest to your class.
};
Building on that, if you use Qt, the following ordering might be interesting:
class SomeQtClass : public QObject {
public:
signals: // what clients can couple on
public slots: // what clients can couple to
protected:
protected slots:
};
Then the same down for protected and private slots. There is no specific reason why I prefer signals over slots; maybe because signals are always public, but I guess the ordering of them would depend on the situation, anyhow, I keep it consistent.
Another bit I like is to use the access-specifiers to visually seperate behaviour from data (following the importance ordering, behaviour first, data last, because behaviour is the top-interest for the class implementor):
class Class {
private:
void foobar() ;
private:
float frob_;
int glob_;
};
Keeping the last rule helps to prevent visual scattering of class components (we all know how some legacy classes look like over time, when variables and functions are mixed up, not?).
I don't think there is any valid reason for this. If you run Code Analysis on a class declared like this you'll get an error as private fields should be declared on top of classes (and below constants).

What is the value of Interfaces?

Sorry to ask sich a generic question, but I've been studying these and, outside of say the head programming conveying what member MUST be in a class, I just don't see any benefits.
There are two (basic) parts to object oriented programming that give newcomers trouble; the first is inheritance and the second is composition. These are the toughest to 'get'; and once you understand those everything else is just that much easier.
What you're referring to is composition - e.g., what does a class do? If you go the inheritance route, it derives from an abstract class (say Dog IS A Animal) . If you use composition, then you are instituting a contract (A Car HAS A Driver/Loan/Insurance). Anyone that implements your interface must implement the methods of that interface.
This allows for loose coupling; and doesn't tie you down into the inheritance model where it doesn't fit.
Where inheritance fits, use it; but if the relationship between two classes is contractual in nature, or HAS-A vs. IS-A, then use an interface to model that part.
Why Use Interfaces?
For a practical example, let's jump into a business application. If you have a repository; you'll want to make the layer above your repository those of interfaces. That way if you have to change anything in the way the respository works, you won't affect anything since they all obey the same contracts.
Here's our repository:
public interface IUserRepository
{
public void Save();
public void Delete(int id);
public bool Create(User user);
public User GetUserById(int id);
}
Now, I can implement that Repository in a class:
public class UserRepository : IRepository
{
public void Save()
{
//Implement
}
public void Delete(int id)
{
//Implement
}
public bool Create(User user)
{
//Implement
}
public User GetUserById(int id)
{
//Implement
}
}
This separates the Interface from what is calling it. I could change this Class from Linq-To-SQL to inline SQL or Stored procedures, and as long as I implemented the IUserRepository interface, no one would be the wiser; and best of all, there are no classes that derive from my class that could potentially be pissed about my change.
Inheritance and Composition: Best Friends
Inheritance and Composition are meant to tackle different problems. Use each where it fits, and there are entire subsets of problems where you use both.
I was going to leave George to point out that you can now consume the interface rather than the concrete class. It seems like everyone here understands what interfaces are and how to define them, but most have failed to explain the key point of them in a way a student will easily grasp - and something that most courses fail to point out instead leaving you to either grasp at straws or figure it out for yourself so I'll attempt to spell it out in a way that doesn't require either. So hopefully you won't be left thinking "so what, it still seems like a waste of time/effort/code."
public interface ICar
{
public bool EngineIsRunning{ get; }
public void StartEngine();
public void StopEngine();
public int NumberOfWheels{ get; }
public void Drive(string direction);
}
public class SportsCar : ICar
{
public SportsCar
{
Console.WriteLine("New sports car ready for action!");
}
public bool EngineIsRunning{ get; protected set; }
public void StartEngine()
{
if(!EngineIsRunning)
{
EngineIsRunning = true;
Console.WriteLine("Engine is started.");
}
else
Console.WriteLine("Engine is already running.");
}
public void StopEngine()
{
if(EngineIsRunning)
{
EngineIsRunning = false;
Console.WriteLine("Engine is stopped.");
}
else
Console.WriteLine("Engine is already stopped.");
}
public int NumberOfWheels
{
get
{
return 4;
}
}
public void Drive(string direction)
{
if (EngineIsRunning)
Console.WriteLine("Driving {0}", direction);
else
Console.WriteLine("You can only drive when the engine is running.");
}
}
public class CarFactory
{
public ICar BuildCar(string car)
{
switch case(car)
case "SportsCar" :
return Activator.CreateInstance("SportsCar");
default :
/* Return some other concrete class that implements ICar */
}
}
public class Program
{
/* Your car type would be defined in your app.config or some other
* mechanism that is application agnostic - perhaps by implicit
* reference of an existing DLL or something else. My point is that
* while I've hard coded the CarType as "SportsCar" in this example,
* in a real world application, the CarType would not be known at
* design time - only at runtime. */
string CarType = "SportsCar";
/* Now we tell the CarFactory to build us a car of whatever type we
* found from our outside configuration */
ICar car = CarFactory.BuildCar(CarType);
/* And without knowing what type of car it was, we work to the
* interface. The CarFactory could have returned any type of car,
* our application doesn't care. We know that any class returned
* from the CarFactory has the StartEngine(), StopEngine() and Drive()
* methods as well as the NumberOfWheels and EngineIsRunning
* properties. */
if (car != null)
{
car.StartEngine();
Console.WriteLine("Engine is running: {0}", car.EngineIsRunning);
if (car.EngineIsRunning)
{
car.Drive("Forward");
car.StopEngine();
}
}
}
As you can see, we could define any type of car, and as long as that car implements the interface ICar, it will have the predefined properties and methods that we can call from our main application. We don't need to know what type of car is - or even the type of class that was returned from the CarFactory.BuildCar() method. It could return an instance of type "DragRacer" for all we care, all we need to know is that DragRacer implements ICar and we can carry on life as normal.
In a real world application, imagine instead IDataStore where our concrete data store classes provide access to a data store on disk, or on the network, some database, thumb drive, we don't care what - all we would care is that the concrete class that is returned from our class factory implements the interface IDataStore and we can call the methods and properties without needing to know about the underlying architecture of the class.
Another real world implication (for .NET at least) is that if the person who coded the sports car class makes changes to the library that contains the sports car implementation and recompiles, and you've made a hard reference to their library you will need to recompile - whereas if you've coded your application against ICar, you can just replace the DLL with their new version and you can carry on as normal.
So that a given class can inherit from multiple sources, while still only inheriting from a single parent class.
Some programming languages (C++ is the classic example) allow a class to inherit from multiple classes; in this case, interfaces aren't needed (and, generally speaking, don't exist.)
However, when you end up in a language like Java or C# where multiple-inheritance isn't allowed, you need a different mechanism to allow a class to inherit from multiple sources - that is, to represent more than one "is-a" relationships. Enter Interfaces.
So, it lets you define, quite literally, interfaces - a class implementing a given interface will implement a given set of methods, without having to specify anything about how those methods are actually written.
Maybe this resource is helpful: When to Use Interfaces
It allows you to separate the implementation from the definition.
For instance I can define one interface that one section of my code is coded against - as far as it is concerned it is calling members on the interface. Then I can swap implementations in and out as I wish - if I want to create a fake version of the database access component then I can.
Interfaces are the basic building blocks of software components
In Java, interfaces allow you to refer any class that implements the interface. This is similar to subclassing however there are times when you want to refer to classes from completely different hierarchies as if they are the same type.
Speaking from a Java standpoint, you can create an interface, telling any classes that implement said interface, that "you MUST implement these methods" but you don't introduce another class into the hierarchy.
This is desireable because you may want to guarantee that certain mechanisms exist when you want objects of different bases to have the same code semantics (ie same methods that are coded as appropriate in each class) for some purpose, but you don't want to create an abstract class, which would limit you in that now you can't inherit another class.
just a thought... i only tinker with Java. I'm no expert.
Please see my thoughts below. 2 different devices need to receive messages from our computer. one resides across the internet and uses http as a transport protocol. the other sits 10 feet away, connect via USB.
Note, this syntax is pseudo-code.
interface writeable
{
void open();
void write();
void close();
}
class A : HTTP_CONNECTION implements writeable
{
//here, opening means opening an HTTP connection.
//maybe writing means to assemble our message for a specific protocol on top of
//HTTP
//maybe closing means to terminate the connection
}
class B : USB_DEVICE implements writeable
{
//open means open a serial connection
//write means write the same message as above, for a different protocol and device
//close means to release USB object gracefully.
}
Interfaces create a layer insulation between a consumer and a supplier. This layer of insulation can be used for different things. But overall, if used correctly they reduce the dependency density (and the resulting complexity) in the application.
I wish to support Electron's answer as the most valid answer.
Object oriented programming facilitates the declaration of contracts.
A class declaration is the contract. The contract is a commitment from the class to provide features according to types/signatures that have been declared by the class. In the common oo languages, each class has a public and a protected contract.
Obviously, we all know that an interface is an empty unfulfilled class template that can be allowed to masquerade as a class. But why have empty unfulfilled class contracts?
An implemented class has all of its contracts spontaneously fulfilled.
An abstract class is a partially fulfilled contract.
A class spontaneously projects a personality thro its implemented features saying it is qualified for a certain job description. However, it also could project more than one personality to qualify itself for more than one job description.
But why should a class Motorcar not present its complete personality honestly rather than hide behind the curtains of multiple-personalities? That is because, a class Bicycle, Boat or Skateboard that wishes to present itself as much as a mode of Transport does not wish to implement all the complexities and constraints of a Motorcar. A boat needs to be capable of water travel which a Motorcar needs not. Then why not give a Motorcar all the features of a Boat too - of course, the response to such a proposal would be - are you kiddin?
Sometimes, we just wish to declare an unfulfilled contract without bothering with the implementation. A totally unfulfilled abstract class is simply an interface. Perhaps, an interface is akin to the blank legal forms you could buy from a stationary shop.
Therefore, in an environment that allows multiple inheritances, interfaces/totally-abstract-classes are useful when we just wish to declare unfulfilled contracts that someone else could fulfill.
In an environment that disallows multiple inheritances, having interfaces is the only way to allow an implementing class to project multiple personalities.
Consider
interface Transportation
{
takePassengers();
gotoDestination(Destination d);
}
class Motorcar implements Transportation
{
cleanWindshiedl();
getOilChange();
doMillionsOtherThings();
...
takePassengers();
gotoDestination(Destination d);
}
class Kayak implements Transportation
{
paddle();
getCarriedAcrossRapids();
...
takePassengers();
gotoDestination(Destination d);
}
An activity requiring Transportation has to be blind to the millions alternatives of transportation. Because it just wants to call
Transportation.takePassengers or
Transportation.gotoDestination
because it is requesting for transportation however it is fulfilled. This is modular thinking and programming, because we don't want to restrict ourselves to a Motorcar or Kayak for transportation. If we restricted to all the transportation we know, we would need to spend a lot of time finding out all the current transportation technologies and see if it fits into our plan of activities.
We also do not know that in the future, a new mode of transport called AntiGravityCar would be developed. And after spending so much time unnecessarily accommodating every mode of transport we possibly know, we find that our routine does not allow us to use AntiGravityCar. But with a specific contract that is blind any technology other than that it requires, not only do we not waste time considering all sorts of behaviours of various transports, but any future transport development that implements the Transport interface can simply include itself into the activity without further ado.
None of the answers yet mention the key word: substitutability. Any object which implements interface Foo may be substituted for "a thing that implements Foo" in any code that needs the latter. In many frameworks, an object must give a single answer to the question "What type of thing are you", and a single answer to "What is your type derived from"; nonetheless, it may be helpful for a type to be substitutable for many different kinds of things. Interfaces allow for that. A VolkswagonBeetleConvertible is derived from VolkswagonBeetle, and a FordMustangConvertible is derived from FordMustang. Both VolkswagonBeetleConvertible and FordMustangConvertible implement IOpenableTop, even though neither class' parent type does. Consequently, the two derived types mentioned can be substituted for "a thing which implements IOpenableTop".