I am doing a project in image processing, basically to Vectorise hand drawn images using image processing techniques.
I am using RANSAC in my project. The challenge that I am facing is that the algorithm does not perform the best fit as required but
it uses any two random points and draws a line that joins them as shown in the image below.
RANSAC results
In my algorithm to Vectorise hand drawn images, I also did Grey-scaling, Image thresholding (Image Binarization),
and Skeletonization using Morphological Operators.
I am using MATLAB for my project.
The following is the code I have done so far
% Line fitting using RANSAC
[x, y] =size(skeleton_image);
point =[];
count =1;
% figure; imshow(~data); hold on
for n =1:x
for m =1:y
if skeleton_image(n,m)==1
point(count,1)=m;
point(count,2)=n;
count= count+1;
end
end
end
data = point';
number = size(data,2); % Total number of points
X = 1:number;
iter=100; num=2; thresh = 1000;count_inlines=103; best_count=0; best_line=[];
for i=1:iter
% Randomly select 2 points
ind = randi(number,num); % randperm(number,num);
rnd_points= data(:,ind);
% Fitting line
Gradient = (rnd_points(2,2)-rnd_points(2,1))/(rnd_points(1,2)-rnd_points(1,1));
Constant = rnd_points(2,1)-Gradient*rnd_points(1,1);
Line = Gradient*X+Constant; [j,k]=size(Line);
% How many pixels are in the line?
for i=1:number
Distance = sqrt((Line(:,i)-data(1,i)).^2)+(Line(:,i)-data(2,i)).^2);
if Distance<=thresh
inlines = data(:,i);
count_inlines=countinlines+1;
best_line=Line;
end
I think your issue might be in the way you are counting the distance and/or the threshold that is currently 1000. It might choose all the points in any case and just pick the first or the last ransac line.
% Line fitting using RANSAC
%create skeleton_image objects
skeleton_image = zeros(50,50);
% draw a circle
circle_center = [15,15];
radius = 6;
for i=1:50
for j = 1:50
if abs( radius - sqrt( (i-circle_center(1))^2 + (j-circle_center(2))^2 ) ) <0.5 % < controls the thickness of the circle
skeleton_image(i,j) = 1;
endif
end
end
% draw a line
grad=0.5;
dy = 20;
for i=10:50
skeleton_image(ceil(dy + grad*i),i)=1;
if (i < 50)
skeleton_image(ceil(dy + grad*i)+1,i)=1;
endif
end
% a handful of random points to make it more realistic
skeleton_image(20,22)=1;
skeleton_image(30,7)=1;
skeleton_image(18,45)=1;
skeleton_image(10,10)=1;
skeleton_image(20,23)=1;
skeleton_image(31,6)=1;
skeleton_image(19,45)=1;
skeleton_image(9,13)=1;
skeleton_image(20,24)=1;
skeleton_image(31,5)=1;
skeleton_image(18,46)=1;
% [x, y] =size(skeleton_image);
x = 50;
y = 50;
points =[];
count =1;
for n =1:x
for m =1:y
if skeleton_image(n,m)==1
points(count,1)=m;
points(count,2)=n;
count= count+1;
end
end
end
best_line = [];
best_count = 0;
line_point_list = [];
% how close the pixel has to be to the line to be accepted
threshold = 1;
% how many samples are taken
steps = 10;
for i=1:steps
% pick two points
ind1 = randi(number,1);
ind2 = randi(number,1);
point1 = points(ind1,:);
point2 = points(ind2,:);
%auxiliaries
line = [point1;point2];
lpl = []; %line_point_list
count_i = 0;
if point1 != point2
vector1 = point2-point1;
% unit vector
vector1_normalized = vector1 ./ norm(vector1);
% normal direction of the line
normal_of_vector1 = [vector1_normalized(2), -vector1_normalized(1)];
% loop over points
for j = 1:size(points)
% calculate distance
normal_of_vector1;
vector2 = points(j,:) - point1;
distance = abs(dot(vector2, normal_of_vector1));
if ( distance < threshold )
count_i +=1;
lpl(count_i,:) = points(j,:);
endif
end
endif
if ( count_i > best_count)
best_count = count_i;
best_line = line;
line_point_list = lpl;
endif
end
%best_c
%best_l
%line_point_list
% draw found points
for i=1:size(line_point_list)
skeleton_image(line_point_list(i,2),line_point_list(i,1) ) = 0.25;
end
%visualize
figure(1)
imshow(skeleton_image)
I have implemented the Self-Organizing Map(SOM) algorithm in MATLAB. Suppose each of the data points are represented in 2-dimensional space. The problem is that I want to visualize the movement of each of the data points in the training phase i.e. I want to see how the points are moving and eventually forming clusters as the algorithm is in progress say at every fix duration. I believe that this can be done through Simulation in MATLAB,but I don't know how to incorporate my MATLAB code for visualization?
I developed a code example to visualize clustering data with multiple dimensions using all possible data projection in 2-D. It may not be the best idea for visualization (there are techniques developed for this, as SOM itself may be used for this need), specially for a higher dimension numbers, but when the number of possible projections (n-1)! is not that high it is a quite good visualizer.
Cluster Algorithm
Since I needed access to the code so that I could save the cluster means and cluster labels for each iteration, I used a fast kmeans algorithm available at FEX by Mo Chen, but I had to adapt it so I could have this access. The adapted code is the following:
function [label,m] = litekmeans(X, k)
% Perform k-means clustering.
% X: d x n data matrix
% k: number of seeds
% Written by Michael Chen (sth4nth#gmail.com).
n = size(X,2);
last = 0;
iter = 1;
label{iter} = ceil(k*rand(1,n)); % random initialization
checkLabel = label{iter};
m = {};
while any(checkLabel ~= last)
[u,~,checkLabel] = unique(checkLabel); % remove empty clusters
k = length(u);
E = sparse(1:n,checkLabel,1,n,k,n); % transform label into indicator matrix
curM = X*(E*spdiags(1./sum(E,1)',0,k,k)); % compute m of each cluster
m{iter} = curM;
last = checkLabel';
[~,checkLabel] = max(bsxfun(#minus,curM'*X,dot(curM,curM,1)'/2),[],1); % assign samples to the nearest centers
iter = iter + 1;
label{iter} = checkLabel;
end
% Get last clusters centers
m{iter} = curM;
% If to remove empty clusters:
%for k=1:iter
% [~,~,label{k}] = unique(label{k});
%end
Gif Creation
I also used #Amro's Matlab video tutorial for the gif creation.
Distinguishable Colors
I used this great FEX by Tim Holy for making the cluster colors easier to distinguish.
Resulting code
My resulting code is as follows. I had some issues because the number of clusters would change for each iteration which would cause scatter plot update to delete all cluster centers without giving any errors. Since I didn't noticed that, I was trying to workaround the scatter function with any obscure method that I could find the web (btw, I found a really nice scatter plot alternative here), but fortunately I got what was happening going back to this today. Here is the code I did for it, you may feel free to use it, adapt it, but please keep my reference if you use it.
function varargout=kmeans_test(data,nClusters,plotOpts,dimLabels,...
bigXDim,bigYDim,gifName)
%
% [label,m,figH,handles]=kmeans_test(data,nClusters,plotOpts,...
% dimLabels,bigXDim,bigYDim,gifName)
% Demonstrate kmeans algorithm iterative progress. Inputs are:
%
% -> data (rand(5,100)): the data to use.
%
% -> nClusters (7): number of clusters to use.
%
% -> plotOpts: struct holding the following fields:
%
% o leftBase: the percentage distance from the left
%
% o rightBase: the percentage distance from the right
%
% o bottomBase: the percentage distance from the bottom
%
% o topBase: the percentage distance from the top
%
% o FontSize: FontSize for axes labels.
%
% o widthUsableArea: Total width occupied by axes
%
% o heigthUsableArea: Total heigth occupied by axes
%
% -> bigXDim (1): the big subplot x dimension
%
% -> bigYDim (2): the big subplot y dimension
%
% -> dimLabels: If you want to specify dimensions labels
%
% -> gifName: gif file name to save
%
% Outputs are:
%
% -> label: Sample cluster center number for each iteration
%
% -> m: cluster center mean for each iteration
%
% -> figH: figure handle
%
% -> handles: axes handles
%
%
% - Creation Date: Fri, 13 Sep 2013
% - Last Modified: Mon, 16 Sep 2013
% - Author(s):
% - W.S.Freund <wsfreund_at_gmail_dot_com>
%
% TODO List (?):
%
% - Use input parser
% - Adapt it to be able to cluster any algorithm function.
% - Use arrows indicating cluster centers movement before moving them.
% - Drag and drop small axes to big axes.
%
% Pre-start
if nargin < 7
gifName = 'kmeansClusterization.gif';
if nargin < 6
bigYDim = 2;
if nargin < 5
bigXDim = 1;
if nargin < 4
nDim = size(data,1);
maxDigits = numel(num2str(nDim));
dimLabels = mat2cell(sprintf(['Dim %0' num2str(maxDigits) 'd'],...
1:nDim),1,zeros(1,nDim)+4+maxDigits);
if nargin < 3
plotOpts = struct('leftBase',.05,'rightBase',.02,...
'bottomBase',.05,'topBase',.02,'FontSize',10,...
'widthUsableArea',.87,'heigthUsableArea',.87);
if nargin < 2
nClusters = 7;
if nargin < 1
center1 = [1; 0; 0; 0; 0];
center2 = [0; 1; 0; 0; 0];
center3 = [0; 0; 1; 0; 0];
center4 = [0; 0; 0; 1; 0];
center5 = [0; 0; 0; 0; 1];
center6 = [0; 0; 0; 0; 1.5];
center7 = [0; 0; 0; 1.5; 1];
data = [...
bsxfun(#plus,center1,.5*rand(5,20)) ...
bsxfun(#plus,center2,.5*rand(5,20)) ...
bsxfun(#plus,center3,.5*rand(5,20)) ...
bsxfun(#plus,center4,.5*rand(5,20)) ...
bsxfun(#plus,center5,.5*rand(5,20)) ...
bsxfun(#plus,center6,.2*rand(5,20)) ...
bsxfun(#plus,center7,.2*rand(5,20)) ...
];
end
end
end
end
end
end
end
% NOTE of advice: It seems that Matlab does not test while on
% refreshdata if the dimension of the inputs are equivalent for the
% XData, YData and CData while using scatter. Because of this I wasted
% a lot of time trying to debug what was the problem, trying many
% workaround since my cluster centers would disappear for no reason.
% Draw axes:
nDim = size(data,1);
figH = figure;
set(figH,'Units', 'normalized', 'Position',...
[0, 0, 1, 1],'Color','w','Name',...
'k-means example','NumberTitle','Off',...
'MenuBar','none','Toolbar','figure',...
'Renderer','zbuffer');
% Create dintinguishable colors matrix:
colorMatrix = distinguishable_colors(nClusters);
% Create axes, deploy them on handles matrix more or less how they
% will be positioned:
[handles,horSpace,vertSpace] = ...
createAxesGrid(5,5,plotOpts,dimLabels);
% Add main axes
bigSubSize = ceil(nDim/2);
bigSubVec(bigSubSize^2) = 0;
for k = 0:nDim-bigSubSize
bigSubVec(k*bigSubSize+1:(k+1)*bigSubSize) = ...
... %(nDim-bigSubSize+k)*nDim+1:(nDim-bigSubSize+k)*nDim+(nDim-bigSubSize+1);
bigSubSize+nDim*k:nDim*(k+1);
end
handles(bigSubSize,bigSubSize) = subplot(nDim,nDim,bigSubVec,...
'FontSize',plotOpts.FontSize,'box','on');
bigSubplotH = handles(bigSubSize,bigSubSize);
horSpace(bigSubSize,bigSubSize) = bigSubSize;
vertSpace(bigSubSize,bigSubSize) = bigSubSize;
set(bigSubplotH,'NextPlot','add',...
'FontSize',plotOpts.FontSize,'box','on',...
'XAxisLocation','top','YAxisLocation','right');
% Squeeze axes through space to optimize space usage and improve
% visualization capability:
[leftPos,botPos,subplotWidth,subplotHeight]=setCustomPlotArea(...
handles,plotOpts,horSpace,vertSpace);
pColorAxes = axes('Position',[leftPos(end) botPos(end) ...
subplotWidth subplotHeight],'Parent',figH);
pcolor([1:nClusters+1;1:nClusters+1])
% image(reshape(colorMatrix,[1 size(colorMatrix)])); % Used image to
% check if the upcoming buggy behaviour would be fixed. I was not
% lucky, though...
colormap(pColorAxes,colorMatrix);
% Change XTick positions to its center:
set(pColorAxes,'XTick',.5:1:nClusters+.5);
set(pColorAxes,'YTick',[]);
% Change its label to cluster number:
set(pColorAxes,'XTickLabel',[nClusters 1:nClusters-1]); % FIXME At
% least on my matlab I have to use this buggy way to set XTickLabel.
% Am I doing something wrong? Since I dunno why this is caused, I just
% change the code so that it looks the way it should look, but this is
% quite strange...
xlabel(pColorAxes,'Clusters Colors','FontSize',plotOpts.FontSize);
% Now iterate throw data and get cluster information:
[label,m]=litekmeans(data,nClusters);
nIters = numel(m)-1;
scatterColors = colorMatrix(label{1},:);
annH = annotation('textbox',[leftPos(1),botPos(1) subplotWidth ...
subplotHeight],'String',sprintf('Start Conditions'),'EdgeColor',...
'none','FontSize',18);
% Creates dimData_%d variables for first iteration:
for curDim=1:nDim
curDimVarName = genvarname(sprintf('dimData_%d',curDim));
eval([curDimVarName,'= m{1}(curDim,:);']);
end
% clusterColors will hold the colors for the total number of clusters
% on each iteration:
clusterColors = colorMatrix;
% Draw cluster information for first iteration:
for curColumn=1:nDim
for curLine=curColumn+1:nDim
% Big subplot data:
if curColumn == bigXDim && curLine == bigYDim
curAxes = handles(bigSubSize,bigSubSize);
curScatter = scatter(curAxes,data(curColumn,:),...
data(curLine,:),16,'filled');
set(curScatter,'CDataSource','scatterColors');
% Draw cluster centers
curColumnVarName = genvarname(sprintf('dimData_%d',curColumn));
curLineVarName = genvarname(sprintf('dimData_%d',curLine));
eval(['curScatter=scatter(curAxes,' curColumnVarName ',' ...
curLineVarName ',100,colorMatrix,''^'',''filled'');']);
set(curScatter,'XDataSource',curColumnVarName,'YDataSource',...
curLineVarName,'CDataSource','clusterColors')
end
% Small subplots data:
curAxes = handles(curLine,curColumn);
% Draw data:
curScatter = scatter(curAxes,data(curColumn,:),...
data(curLine,:),16,'filled');
set(curScatter,'CDataSource','scatterColors');
% Draw cluster centers
curColumnVarName = genvarname(sprintf('dimData_%d',curColumn));
curLineVarName = genvarname(sprintf('dimData_%d',curLine));
eval(['curScatter=scatter(curAxes,' curColumnVarName ',' ...
curLineVarName ',100,colorMatrix,''^'',''filled'');']);
set(curScatter,'XDataSource',curColumnVarName,'YDataSource',...
curLineVarName,'CDataSource','clusterColors');
if curLine==nDim
xlabel(curAxes,dimLabels{curColumn});
set(curAxes,'XTick',xlim(curAxes));
end
if curColumn==1
ylabel(curAxes,dimLabels{curLine});
set(curAxes,'YTick',ylim(curAxes));
end
end
end
refreshdata(figH,'caller');
% Preallocate gif frame. From Amro's tutorial here:
% https://stackoverflow.com/a/11054155/1162884
f = getframe(figH);
[f,map] = rgb2ind(f.cdata, 256, 'nodither');
mov = repmat(f, [1 1 1 nIters+4]);
% Add one frame at start conditions:
curFrame = 1;
% Add three frames without movement at start conditions
f = getframe(figH);
mov(:,:,1,curFrame) = rgb2ind(f.cdata, map, 'nodither');
for curIter = 1:nIters
curFrame = curFrame+1;
% Change label text
set(annH,'String',sprintf('Iteration %d',curIter));
% Update cluster point colors
scatterColors = colorMatrix(label{curIter+1},:);
% Update cluster centers:
for curDim=1:nDim
curDimVarName = genvarname(sprintf('dimData_%d',curDim));
eval([curDimVarName,'= m{curIter+1}(curDim,:);']);
end
% Update cluster colors:
nClusterIter = size(m{curIter+1},2);
clusterColors = colorMatrix(1:nClusterIter,:);
% Update graphics:
refreshdata(figH,'caller');
% Update cluster colors:
if nClusterIter~=size(m{curIter},2) % If number of cluster
% of current iteration differs from previous iteration (or start
% conditions in case we are at first iteration) we redraw colors:
pcolor([1:nClusterIter+1;1:nClusterIter+1])
% image(reshape(colorMatrix,[1 size(colorMatrix)])); % Used image to
% check if the upcomming buggy behaviour would be fixed. I was not
% lucky, though...
colormap(pColorAxes,clusterColors);
% Change XTick positions to its center:
set(pColorAxes,'XTick',.5:1:nClusterIter+.5);
set(pColorAxes,'YTick',[]);
% Change its label to cluster number:
set(pColorAxes,'XTickLabel',[nClusterIter 1:nClusterIter-1]);
xlabel(pColorAxes,'Clusters Colors','FontSize',plotOpts.FontSize);
end
f = getframe(figH);
mov(:,:,1,curFrame) = rgb2ind(f.cdata, map, 'nodither');
end
set(annH,'String','Convergence Conditions');
for curFrame = nIters+1:nIters+3
% Add three frames without movement at start conditions
f = getframe(figH);
mov(:,:,1,curFrame) = rgb2ind(f.cdata, map, 'nodither');
end
imwrite(mov, map, gifName, 'DelayTime',.5, 'LoopCount',inf)
varargout = cell(1,nargout);
if nargout > 0
varargout{1} = label;
if nargout > 1
varargout{2} = m;
if nargout > 2
varargout{3} = figH;
if nargout > 3
varargout{4} = handles;
end
end
end
end
end
function [leftPos,botPos,subplotWidth,subplotHeight] = ...
setCustomPlotArea(handles,plotOpts,horSpace,vertSpace)
%
% -> handles: axes handles
%
% -> plotOpts: struct holding the following fields:
%
% o leftBase: the percentage distance from the left
%
% o rightBase: the percentage distance from the right
%
% o bottomBase: the percentage distance from the bottom
%
% o topBase: the percentage distance from the top
%
% o widthUsableArea: Total width occupied by axes
%
% o heigthUsableArea: Total heigth occupied by axes
%
% -> horSpace: the axes units size (integers only) that current axes
% should occupy in the horizontal (considering that other occupied
% axes handles are empty)
%
% -> vertSpace: the axes units size (integers only) that current axes
% should occupy in the vertical (considering that other occupied
% axes handles are empty)
%
nHorSubPlot = size(handles,1);
nVertSubPlot = size(handles,2);
if nargin < 4
horSpace(nHorSubPlot,nVertSubPlot) = 0;
horSpace = horSpace+1;
if nargin < 3
vertSpace(nHorSubPlot,nVertSubPlot) = 0;
vertSpace = vertSpace+1;
end
end
subplotWidth = plotOpts.widthUsableArea/nHorSubPlot;
subplotHeight = plotOpts.heigthUsableArea/nVertSubPlot;
totalWidth = (1-plotOpts.rightBase) - plotOpts.leftBase;
totalHeight = (1-plotOpts.topBase) - plotOpts.bottomBase;
gapHeigthSpace = (totalHeight - ...
plotOpts.heigthUsableArea)/(nVertSubPlot);
gapWidthSpace = (totalWidth - ...
plotOpts.widthUsableArea)/(nHorSubPlot);
botPos(nVertSubPlot) = plotOpts.bottomBase + gapWidthSpace/2;
leftPos(1) = plotOpts.leftBase + gapHeigthSpace/2;
botPos(nVertSubPlot-1:-1:1) = botPos(nVertSubPlot) + (subplotHeight +...
gapHeigthSpace)*(1:nVertSubPlot-1);
leftPos(2:nHorSubPlot) = leftPos(1) + (subplotWidth +...
gapWidthSpace)*(1:nHorSubPlot-1);
for curLine=1:nHorSubPlot
for curColumn=1:nVertSubPlot
if handles(curLine,curColumn)
set(handles(curLine,curColumn),'Position',[leftPos(curColumn)...
botPos(curLine) horSpace(curLine,curColumn)*subplotWidth ...
vertSpace(curLine,curColumn)*subplotHeight]);
end
end
end
end
function [handles,horSpace,vertSpace] = ...
createAxesGrid(nLines,nColumns,plotOpts,dimLabels)
handles = zeros(nLines,nColumns);
% Those hold the axes size units:
horSpace(nLines,nColumns) = 0;
vertSpace(nLines,nColumns) = 0;
for curColumn=1:nColumns
for curLine=curColumn+1:nLines
handles(curLine,curColumn) = subplot(nLines,...
nColumns,curColumn+(curLine-1)*nColumns);
horSpace(curLine,curColumn) = 1;
vertSpace(curLine,curColumn) = 1;
curAxes = handles(curLine,curColumn);
if feature('UseHG2')
colormap(handle(curAxes),colorMatrix);
end
set(curAxes,'NextPlot','add',...
'FontSize',plotOpts.FontSize,'box','on');
if curLine==nLines
xlabel(curAxes,dimLabels{curColumn});
else
set(curAxes,'XTick',[]);
end
if curColumn==1
ylabel(curAxes,dimLabels{curLine});
else
set(curAxes,'YTick',[]);
end
end
end
end
Example
Here is an example using 5 dimensions, using the code:
center1 = [1; 0; 0; 0; 0];
center2 = [0; 1; 0; 0; 0];
center3 = [0; 0; 1; 0; 0];
center4 = [0; 0; 0; 1; 0];
center5 = [0; 0; 0; 0; 1];
center6 = [0; 0; 0; 0; 1.5];
center7 = [0; 0; 0; 1.5; 1];
data = [...
bsxfun(#plus,center1,.5*rand(5,20)) ...
bsxfun(#plus,center2,.5*rand(5,20)) ...
bsxfun(#plus,center3,.5*rand(5,20)) ...
bsxfun(#plus,center4,.5*rand(5,20)) ...
bsxfun(#plus,center5,.5*rand(5,20)) ...
bsxfun(#plus,center6,.2*rand(5,20)) ...
bsxfun(#plus,center7,.2*rand(5,20)) ...
];
[label,m,figH,handles]=kmeans_test(data,20);
I am plotting the azimuth and elevation of some satellites, where the color of each trajectory represents the S4 index, from low (blue) to high (red). I would like however, to be able to format the colors and corresponding values, so that more of the lower effects of scintillation can actually be distinguished. This is because the high end of scintillation (red) only shows one or two points. Here is a picture of the trajectory and the code.
clc; close all; clear all
load combo_323_full
circular_plot
x = [];
y = [];
for s = 1:samples
% plot each satellite location for that sample
for sv = 1:sats
% check if positive or negative elevation
if (elevation((s - 1) * sats + sv) < 0)
elNeg = 1;
else
elNeg = 0;
end
% convert to plottable cartesian coordinates
el = elevation((s - 1) * sats + sv);
az = azimuth((s - 1) * sats + sv);
x = [x;(pi/2-abs(el))/(pi/2).*cos(az-pi/2)];
y = [y;-1*(pi/2-abs(el))/(pi/2).*sin(az-pi/2)];
% check for final sample
% if (s == samples)
% plot(x,y,'r*');
% text(x,y+.07,int2str(SVs(sv)), ...
% 'horizontalalignment', ...
% 'center','color','r');
% else
% check for +/- elevation
% if (elNeg == 0)
% plot(x,y,'.','color',rgb('DarkBlue'));
% else
% plot(x,y,'g.');
% % end
% end
end
end
z = combo(:,5);
for j = 1:10
% hold on
% circular_plot
lRef = length(x);
l1 = floor(lRef*(1/100));
l2 = floor(l1*j);
x_time = x(1:l2);
y_time = y(1:l2);
zr = z(1:l2);
navConstants;
% find out from 'plotMat' if plotting satellite locations or trajectories in
% addition determine how many satellites are being tracked and how many
% samples for each satellite (# samples / satellite must always be equal)
gpsTime = combo(1,2);
i = 1;
t = gpsTime;
while ((i ~= size(combo,1)) & (t == gpsTime))
i = i + 1;
t = combo(i,2);
end
if (t == gpsTime)
sats = i;
else
sats = i - 1;
end;
samples = size(combo,1) / sats;
SVs = combo(1:sats,1);
elevation = combo(:,20).*pi/180;
azimuth = combo(:,19).*pi/180;
% initialize polar - plotting area
figure(j);
axis([-1.4 1.4 -1.1 1.1]);
axis('off');
axis(axis);
hold on;
% plot circular axis and labels
th = 0:pi/50:2*pi;
x_c = [ cos(th) .67.*cos(th) .33.*cos(th) ];
y_c = [ sin(th) .67.*sin(th) .33.*sin(th) ];
plot(x_c,y_c,'color','w');
text(1.1,0,'90','horizontalalignment','center');
text(0,1.1,'0','horizontalalignment','center');
text(-1.1,0,'270','horizontalalignment','center');
text(0,-1.1,'180','horizontalalignment','center');
% plot spoke axis and labels
th = (1:6)*2*pi/12;
x_c = [ -cos(th); cos(th) ];
y_c = [ -sin(th); sin(th) ];
plot(x_c,y_c,'color','w');
text(-.46,.93,'0','horizontalalignment','center');
text(-.30,.66,'30','horizontalalignment','center');
text(-.13,.36,'60','horizontalalignment','center');
text(.04,.07,'90','horizontalalignment','center');
scatter(x_time,y_time,3,zr)
colorbar
axis equal
end
You can make your own colormap, it's just a N by 3 matrix where the columns are the red, green and blue components respectively.
The default colormap is jet. If you type for instance
>>> jet(16)
you will get a 16 by 3 matrix and you can see how it is made.
Then use colormap(your_own_colormap) to change it.