I have a dataset with 20 features. 10 for age and 10 for weight. I want to classify the data for both separately then use the results from these 2 classifiers as an input to a third for the final result..
Is this possible with Weka????
Fusion of decisions is possible in WEKA (or with any two models), but not using the approach you describe.
Seeing as your using classifiers, each model will only output a class. You could use the two labels produced as features for a third model, but the lack of diversity in your inputs would most likely prevent the third model from giving you anything interesting.
At the most basic level, you could implement a voting scheme. Give each model a "vote" and then take assume that the correct class is the majority voted class. While this will give a rudimentary form of fusion, if you're familiar with voting theory you know that majority-rules somewhat falls apart when you have more than two classes.
I recommend that you use Combinatorial Fusion to fuse the output of the two classifiers. A good paper regarding the technique is available as a free PDF here. In essence, you use the Classifer::distributionForInstance() method provided by WEKA's classifiers and then use the sum of the distributions (called "scores") to rank the classes, choosing the class with the highest rank. The paper demonstrates that this method is superior to doing just voting alone.
Related
I try to apply One Class SVM but my dataset contains too many features and I believe feature selection would improve my metrics. Are there any methods for feature selection that do not need the label of the class?
If yes and you are aware of an existing implementation please let me know
You'd probably get better answers asking this on Cross Validated instead of Stack Exchange, although since you ask for implementations I will answer your question.
Unsupervised methods exist that allow you to eliminate features without looking at the target variable. This is called unsupervised data (dimensionality) reduction. They work by looking for features that convey similar information and then either eliminate some of those features or reduce them to fewer features whilst retaining as much information as possible.
Some examples of data reduction techniques include PCA, redundancy analysis, variable clustering, and random projections, amongst others.
You don't mention which program you're working in but I am going to presume it's Python. sklearn has implementations for PCA and SparseRandomProjection. I know there is a module designed for variable clustering in Python but I have not used it and don't know how convenient it is. I don't know if there's an unsupervised implementation of redundancy analysis in Python but you could consider making your own. Depending on what you decide to do it might not be too tricky (especially if you just do correlation based).
In case you're working in R, finding versions of data reduction using PCA will be no problem. For variable clustering and redundancy analysis, great packages like Hmisc and ClustOfVar exist.
You can also read about other unsupervised data reduction techniques; you might find other methods more suitable.
I am a student and working on my first simple machine learning project. The project is about classifying articles into fake and true. I want to use SVM as classification algorithm and two different types of features:
TF-IDF
Lexical Features like the count of exclamation marks and numbers
I have figured out how to use the lexical features and TF-IDF as a features separately. However, I have not managed to figure out, how to combine them.
Is it possible, to train and test two separate learning algorithms (one with TF-IDF and the other one with lexical features) and later combine the results?
For example, can I calculate Accuracy, Precision and Recall for both separately and then take the average?
One way of combining two models is called model stacking. The idea behind it is, that you take the predictions of both models and feed them into a third model (called meta-model) which is then trained to make predictions given the output of the first two models. There is also another version of model stacking where you aditionally feed the original features into the meta-model.
However, in your case another way to combine both approaches would be to simply feed both the TF-IDF and the lexical features into one model and see how that performs.
For example, can I calculate Accuracy, Precision and Recall for both separately and then take the average?
This would unfortunately not work, because there is no combined model making those predictions for which your calculated metrics would be true.
I am learning recommendation systems from Coursera MooC. I see there are majorly three types of filtering methods (in introduction course).
a. Content-based filtering
b. Item-Item collaborative filtering
c. User-User collaborative filtering
Having understood this, I am not sure where does the - similar users recommendation based on the interests/preferences belong to? For example, consider I have User->TopicsOfInterest0..n relation. I want to recommend other similar users based on their respective TopicsOfInterest (vector).
I'm not sure that these three types are an exhaustive classification of all recommender systems.
In fact, any matrix-factorization based algorithm (SVD, etc.) is both item-based and user-based at the same time. But the TopicsOfInterest (factors) are inferred automatically by the algorithm. For example, Apache Spark includes an implementation of the alternating least squares (ALS) algorithm. Spark's API has the userFeatures method, which returns (roughly) a matrix, predicting users's attitude to each feature.
The only thing left to do is to compute a set of most similar users to a given one (e.g. find vectors, that are closest to a given one by cosine similarity).
I am trying to detect the faces using the Matlab built-in viola jones face detection. Is there anyway that I can combine two classification models like "FrontalFaceCART" and "ProfileFace" into one in order to get a better result?
Thank you.
You can't combine models. That's a non-sense in any classification task since every classifier is different (works differently, i.e. different algorithm behind it, and maybe is also trained differently).
According to the classification model(s) help (which can be found here), your two classifiers work as follows:
FrontalFaceCART is a model composed of weak classifiers, based on classification and regression tree analysis
ProfileFace is composed of weak classifiers, based on a decision stump
More infos can be found in the link provided but you can easily see that their inner behaviour is rather different, so you can't mix them or combine them.
It's like (in Machine Learning) mixing a Support Vector Machine with a K-Nearest Neighbour: the first one uses separating hyperplanes whereas the latter is simply based on distance(s).
You can, however, train several models in parallel (e.g. independently) and choose the model that better suits you (e.g. smaller error rate/higher accuracy): so you basically create as many different classifiers as you like, give them the same training set, evaluate each accuracy (and/or other parameters) and choose the best model.
One option is to make a hierarchical classifier. So in a first step you use the frontal face classifier (assuming that most pictures are frontal faces). If the classifier fails, you try with the profile classifier.
I did that with a dataset of faces and it improved my overall classification accuracy. Furthermore, if you have some a priori information, you can use it. In my case the faces were usually in the middle up part of the picture.
To further improve your performance, without using the two classifiers in MATLAB you are using, you would need to change your technique (and probably your programming language). This is the best method so far: Facenet.
I'm trying to train a classifier (specifically, a decision forest) using the Matlab 'TreeBagger' class.
I notice from the online documentation for TreeBagger, that there are a couple of methods/properties that could be used to see how important each data point feature is for distinguishing between classes of data point.
The two I found were the ComputeOOBVarImp property and the ClassificationTree.predictorImportance method. Using the latter on a decision forest/bagged ensemble of trees that I'd built, I found that many data point features had zero importance for the classifier.
Is there anything I can do with the TreeBagger class, or in conjunction with it, so that my trees use weak learners/splitting criteria that aren't just bounds on single input data features, but linear combinations of these features, in order to improve the 'information gain' at each node split.
I suppose this comes down to dimensionality reduction of the data, that I have no experience in dealing with in Matlab.
Thanks.