We use Redis on Spark to cache our key-value pairs.This is the code:
import com.redis.RedisClient
val r = new RedisClient("192.168.1.101", 6379)
val perhit = perhitFile.map(x => {
val arr = x.split(" ")
val readId = arr(0).toInt
val refId = arr(1).toInt
val start = arr(2).toInt
val end = arr(3).toInt
val refStr = r.hmget("refStr", refId).get(refId).split(",")(1)
val readStr = r.hmget("readStr", readId).get(readId)
val realend = if(end > refStr.length - 1) refStr.length - 1 else end
val refOneStr = refStr.substring(start, realend)
(readStr, refOneStr, refId, start, realend, readId)
})
But compiler gave me feedback like this:
Exception in thread "main" org.apache.spark.SparkException: Task not serializable
at org.apache.spark.util.ClosureCleaner$.ensureSerializable(ClosureCleaner.scala:166)
at org.apache.spark.util.ClosureCleaner$.clean(ClosureCleaner.scala:158)
at org.apache.spark.SparkContext.clean(SparkContext.scala:1242)
at org.apache.spark.rdd.RDD.map(RDD.scala:270)
at com.ynu.App$.main(App.scala:511)
at com.ynu.App.main(App.scala)
at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:57)
at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
at java.lang.reflect.Method.invoke(Method.java:606)
at org.apache.spark.deploy.SparkSubmit$.launch(SparkSubmit.scala:328)
at org.apache.spark.deploy.SparkSubmit$.main(SparkSubmit.scala:75)
at org.apache.spark.deploy.SparkSubmit.main(SparkSubmit.scala)
Caused by: java.io.NotSerializableException: com.redis.RedisClient
at java.io.ObjectOutputStream.writeObject0(ObjectOutputStream.java:1183)
at java.io.ObjectOutputStream.defaultWriteFields(ObjectOutputStream.java:1547)
at java.io.ObjectOutputStream.writeSerialData(ObjectOutputStream.java:1508)
at java.io.ObjectOutputStream.writeOrdinaryObject(ObjectOutputStream.java:1431)
at java.io.ObjectOutputStream.writeObject0(ObjectOutputStream.java:1177)
at java.io.ObjectOutputStream.writeObject(ObjectOutputStream.java:347)
at org.apache.spark.serializer.JavaSerializationStream.writeObject(JavaSerializer.scala:42)
at org.apache.spark.serializer.JavaSerializerInstance.serialize(JavaSerializer.scala:73)
at org.apache.spark.util.ClosureCleaner$.ensureSerializable(ClosureCleaner.scala:164)
... 12 more
Could somebody tell me how to serialize the data get from Redis.Thanks a lot.
In Spark, the functions on RDDs (like map here) are serialized and send to the executors for processing. This implies that all elements contained within those operations should be serializable.
The Redis connection here is not serializable as it opens TCP connections to the target DB that are bound to the machine where it's created.
The solution is to create those connections on the executors, in the local execution context. There're few ways to do that. Two that pop to mind are:
rdd.mapPartitions: lets you process a whole partition at once, and therefore amortize the cost of creating connections)
Singleton connection managers: Create the connection once per executor
mapPartitions is easier as all it requires is a small change to the program structure:
val perhit = perhitFile.mapPartitions{partition =>
val r = new RedisClient("192.168.1.101", 6379) // create the connection in the context of the mapPartition operation
val res = partition.map{ x =>
...
val refStr = r.hmget(...) // use r to process the local data
}
r.close // take care of resources
res
}
A singleton connection manager can be modeled with an object that holds a lazy reference to a connection (note: a mutable ref will also work).
object RedisConnection extends Serializable {
lazy val conn: RedisClient = new RedisClient("192.168.1.101", 6379)
}
This object can then be used to instantiate 1 connection per worker JVM and is used as a Serializable object in an operation closure.
val perhit = perhitFile.map{x =>
val param = f(x)
val refStr = RedisConnection.conn.hmget(...) // use RedisConnection to get a connection to the local data
}
}
The advantage of using the singleton object is less overhead as connections are created only once by JVM (as opposed to 1 per RDD partition)
There're also some disadvantages:
cleanup of connections is tricky (shutdown hook/timers)
one must ensure thread-safety of shared resources
(*) code provided for illustration purposes. Not compiled or tested.
You're trying to serialize the client. You have one RedisClient, r, that you're trying to use inside the map that will be run across different cluster nodes. Either get the data you want out of redis separately before doing a cluster task, or create the client individually for each cluster task inside your map block (perhaps by using mapPartitions rather than map, as creating a new redis client for each individual row is probably a bad idea).
Related
Objective:- Retrieve objects from an S3 bucket using a 'get' api call, write the retrieved object to azure datalake and in case of errors like 404s (object not found) write the error message to cosmos DB
"my_dataframe" consists of the a column (s3ObjectName) with object names like:-
s3ObjectName
a1.json
b2.json
c3.json
d4.json
e5.json
//retry function that writes cosmos error in event of failure
def retry[T](n: Int)(fn: => T): T = {
Try {
return fn
} match {
case Success(x) => x
case Failure(t: Throwable) => {
Thread.sleep(1000)
if (n > 1) {
retry(n - 1)(fn)
} else {
val loggerDf = Seq((t.toString)).toDF("Description")
.withColumn("Type", lit("Failure"))
.withColumn("id", uuid())
loggerDf.write.format("cosmos.oltp").options(ExceptionCfg).mode("APPEND").save()
throw t
}
}
}
}
//execute s3 get api call
my_dataframe.rdd.foreachPartition(partition => {
val creds = new BasicAWSCredentials(AccessKey, SecretKey)
val clientRegion: Regions = Regions.US_EAST_1
val s3client = AmazonS3ClientBuilder.standard()
.withRegion(clientRegion)
.withCredentials(new AWSStaticCredentialsProvider(creds))
.build()
partition.foreach(x => {
retry (2) {
val objectKey = x.getString(0)
val i = s3client.getObject(s3bucket_name, objectKey).getObjectContent
val inputS3String = IOUtils.toString(i, "UTF-8")
val filePath = s"${data_lake_file_path}"
val file = new File(filePath)
val fileWriter = new FileWriter(file)
val bw = new BufferedWriter(fileWriter)
bw.write(inputS3String)
bw.close()
fileWriter.close()
}
})
})
When the above is executed it results in the following error:-
Caused by: java.lang.NullPointerException
This error occurs in the retry function when it is asked to create the dataframe loggerDf and write it to cosmos db
Is there another way to write the error messages to cosmos DB ?
Maybe this isn't a good time to use spark. There is already some hadoop tooling to accomplish this type of S3 file transfer using hadoop that does what you are doing but uses hadoop tools.
If you still feel like spark is the correct tooling:
Split this into a reporting problem and a data transfer problem.
Create and test a list of the files to see if they're valid. Write a UDF that does the dirty work of creating a data frame of good/bad files.
Report the files that aren't valid. (To Cosmos)
Transfer the files that are valid.
If you want to write errors to cosmo DB you'll need to use an "out of band" method to initiate the connection from the executors.(Think: initiating a jdbc connection from inside the partition.foreach.)
As a lower standard, if you wanted to know if it happened you could use Accumulators. This isn't made for logging but does help transfer information from executors to the driver. This would enable you to write something back to Cosmos, but really was intended be used to simply count if something has happened. (And can double count if you end up retrying a executor, so it's not perfect.) It technically can transfer information back to the driver, but should only be used for countable things. (If this type of failure is extremely irregular it's likely suitable. If this happens a lot it's not suitable for use.)
I'm having problems accessing a variable from inside a transformation function. Could someone help me out?
Here are my relevant classes and functions.
#SerialVersionUID(889949215L)
object MyCache extends Serializable {
#transient lazy val logger = Logger(getClass.getName)
#volatile var cache: Broadcast[Map[UUID, Definition]] = null
def getInstance(sparkContext: SparkContext) : Broadcast[Map[UUID, Definition]] = {
if (cache == null) {
synchronized {
val map = sparkContext.cassandraTable("keyspace", "table")
.collect()
.map(m => m.getUUID("id") ->
Definition(m.getString("c1"), m.getString("c2"), m.getString("c3"),
m.getString("c4"))).toMap
cache = sparkContext.broadcast(map)
}
}
cache
}
}
In a different file:
object Processor extends Serializable {
#transient lazy val logger = Logger(getClass.getName)
def processData[T: ClassTag](rawStream: DStream[(String, String)], ssc: StreamingContext,
processor: (String, Broadcast[Map[UUID, Definition]]) => T): DStream[T] = {
MYCache.getInstance(ssc.sparkContext)
var newCacheValues = Map[UUID, Definition]()
rawStream.cache()
rawStream
.transform(rdd => {
val array = rdd.collect()
array.foreach(r => {
val value = getNewCacheValue(r._2, rdd.context)
if (value.isDefined) {
newCacheValues = newCacheValues + value.get
}
})
rdd
})
if (newCacheValues.nonEmpty) {
logger.info(s"Rebroadcasting. There are ${newCacheValues.size} new values")
logger.info("Destroying old cache")
MyCache.cache.destroy()
// this is probably wrong here, destroying object, but then referencing it. But I haven't gotten to this part yet.
MyCache.cache = ssc.sparkContext.broadcast(MyCache.cache.value ++ newCacheValues)
}
rawStream
.map(r => {
println("######################")
println(MyCache.cache.value)
r
})
.map(r => processor(r._2, MyCache.cache.value))
.filter(r => null != r)
}
}
Every time I run this I get SparkException: Failed to get broadcast_1_piece0 of broadcast_1 when trying to access cache.value
When I add a println(MyCache.cache.values) right after the .getInstance I'm able to access the broadcast variable, but when I deploy it to a mesos cluster I'm unable to access the broadcast values again, but with a null pointer exception.
Update:
The error I'm seeing is on println(MyCache.cache.value). I shouldn't have added this if statement containing the destroy, because my tests are never hitting that.
The basics of my application are, I have a table in cassandra that won't be updated very much. But I need to do some validation on some streaming data. So I want to pull all the data from this table, that isn't update much, into memory. getInstance pulls the whole table in on startup, and then I check all my streaming data to see if I need to pull from cassandra again (which I will have to very rarely). The transform and collect is where I check to see if I need to pull new data in. But since there is a chance that my table will be updated, I will need to update the broadcast occasionally. So my idea was to destroy it and then rebroadcast. I will update that once I get the other stuff working.
I get the same error if I comment out the destroy and rebroadcast.
Another update:
I need to access the broadcast variable in processor this line: .map(r => processor(r._2, MyCache.cache.value)).
I'm able to broadcast variable in the transform, and if I do println(MyCache.cache.value) in the transform, then all my tests pass, and I'm able to then access the broadcast in processor
Update:
rawStream
.map(r => {
println("$$$$$$$$$$$$$$$$$$$")
println(metrics.value)
r
})
This is the stack trace I get when it hits this line.
ERROR org.apache.spark.executor.Executor - Exception in task 0.0 in stage 135.0 (TID 114)
java.io.IOException: org.apache.spark.SparkException: Failed to get broadcast_1_piece0 of broadcast_1
at org.apache.spark.util.Utils$.tryOrIOException(Utils.scala:1222)
at org.apache.spark.broadcast.TorrentBroadcast.readBroadcastBlock(TorrentBroadcast.scala:165)
at org.apache.spark.broadcast.TorrentBroadcast._value$lzycompute(TorrentBroadcast.scala:64)
at org.apache.spark.broadcast.TorrentBroadcast._value(TorrentBroadcast.scala:64)
at org.apache.spark.broadcast.TorrentBroadcast.getValue(TorrentBroadcast.scala:88)
at org.apache.spark.broadcast.Broadcast.value(Broadcast.scala:70)
at com.uptake.readings.ingestion.StreamProcessors$$anonfun$processIncomingKafkaData$4.apply(StreamProcessors.scala:160)
at com.uptake.readings.ingestion.StreamProcessors$$anonfun$processIncomingKafkaData$4.apply(StreamProcessors.scala:158)
at scala.collection.Iterator$$anon$11.next(Iterator.scala:370)
at scala.collection.Iterator$$anon$11.next(Iterator.scala:370)
at scala.collection.Iterator$$anon$13.hasNext(Iterator.scala:414)
at org.apache.spark.storage.MemoryStore.unrollSafely(MemoryStore.scala:284)
at org.apache.spark.CacheManager.putInBlockManager(CacheManager.scala:171)
at org.apache.spark.CacheManager.getOrCompute(CacheManager.scala:78)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:268)
at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:306)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:270)
at org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:73)
at org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:41)
at org.apache.spark.scheduler.Task.run(Task.scala:89)
at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:214)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617)
at java.lang.Thread.run(Thread.java:745)
Caused by: org.apache.spark.SparkException: Failed to get broadcast_1_piece0 of broadcast_1
at org.apache.spark.broadcast.TorrentBroadcast$$anonfun$org$apache$spark$broadcast$TorrentBroadcast$$readBlocks$1$$anonfun$2.apply(TorrentBroadcast.scala:138)
at org.apache.spark.broadcast.TorrentBroadcast$$anonfun$org$apache$spark$broadcast$TorrentBroadcast$$readBlocks$1$$anonfun$2.apply(TorrentBroadcast.scala:138)
at scala.Option.getOrElse(Option.scala:121)
at org.apache.spark.broadcast.TorrentBroadcast$$anonfun$org$apache$spark$broadcast$TorrentBroadcast$$readBlocks$1.apply$mcVI$sp(TorrentBroadcast.scala:137)
at org.apache.spark.broadcast.TorrentBroadcast$$anonfun$org$apache$spark$broadcast$TorrentBroadcast$$readBlocks$1.apply(TorrentBroadcast.scala:120)
at org.apache.spark.broadcast.TorrentBroadcast$$anonfun$org$apache$spark$broadcast$TorrentBroadcast$$readBlocks$1.apply(TorrentBroadcast.scala:120)
at scala.collection.immutable.List.foreach(List.scala:381)
at org.apache.spark.broadcast.TorrentBroadcast.org$apache$spark$broadcast$TorrentBroadcast$$readBlocks(TorrentBroadcast.scala:120)
at org.apache.spark.broadcast.TorrentBroadcast$$anonfun$readBroadcastBlock$1.apply(TorrentBroadcast.scala:175)
at org.apache.spark.util.Utils$.tryOrIOException(Utils.scala:1219)
... 24 more
[Updated answer]
You're getting an error because the code inside rawStream.map i.e. MyCache.cache.value is getting executed on one of the executor and there the MyCache.cache is still null!
When you did MyCache.getInstance, it created the MyCache.cache value on the driver and broadcasted it alright. But you're not referring to the same object in the your map method, so it doesn't get sent over to executors. Instead since you are directly referring to the MyCache, the executors invoke MyCache.cache on their own copy of MyCache object, and this obviously is null.
You can get this to work as expected by first getting an instance of cache broadcast object within the driver and using that object in the map. The following code should work for you --
val cache = MYCache.getInstance(ssc.sparkContext)
rawStream.map(r => {
println(cache.value)
r
})
I am trying to make a spark streaming program using a model to predict, but I get an error doing this: Task not serializable.
Code:
val model = sc.objectFile[DecisionTreeModel]("DecisionTreeModel").first()
val parsedData = reducedData.map { line =>
val arr = Array(line._2._1,line._2._2,line._2._3,line._2._4,line._2._5,line._2._6,line._2._7,line._2._8,line._2._9,line._2._10,line._2._11)
val vector = LabeledPoint(line._2._4, Vectors.dense(arr))
model.predict(vector.features))
}
I paste the error:
scala> val parsedData = reducedData.map { line =>
| val arr = Array(line._2._1,line._2._2,line._2._3,line._2._4,line._2._5,line._2._6,line._2._7,line._2._8,line._2._9,line._2._10,line._2._11)
| val vector=LabeledPoint(line._2._4, Vectors.dense(arr))
| model.predict(vector.features)
| }
org.apache.spark.SparkException: Task not serializable
at org.apache.spark.util.ClosureCleaner$.ensureSerializable(ClosureCleaner.scala:304)
at org.apache.spark.util.ClosureCleaner$.org$apache$spark$util$ClosureCleaner$$clean(ClosureCleaner.scala:294)
at org.apache.spark.util.ClosureCleaner$.clean(ClosureCleaner.scala:122)
at org.apache.spark.SparkContext.clean(SparkContext.scala:2030)
at org.apache.spark.streaming.dstream.DStream$$anonfun$map$1.apply(DStream.scala:528)
at org.apache.spark.streaming.dstream.DStream$$anonfun$map$1.apply(DStream.scala:528)
at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:147)
at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:108)
at org.apache.spark.SparkContext.withScope(SparkContext.scala:709)
at .......
How can I solve this issue?
Thanks!
Refer this link:
https://databricks.gitbooks.io/databricks-spark-knowledge-base/content/troubleshooting/javaionotserializableexception.html
In your case, "model" is instantiated in driver and used in map which causes the object to be sent over network from driver to executors, so it should be serializable. If you cannot make model serializable, try avoiding having to serialize by instantiating model inside map.You may also need to control how often you create this object within executor - once per row(default), once per task(i.e., thread) or once per executor(i.e, jvm).
Finally, I don't think you can have a single global "model" object that you can cause mutations to from multiple executors - just in case that's what you are looking for(irrespective of whether you need to make it serializable or not).Comments welcome on this point.
Currently I am running Spark Mllib ALS on million of users and products and as with following code due to high shuffle to disk, collect step take more time as compare to recommendProductsForUsers step. So if I can somehow remove collect step and feed data directly from executors to elasticsearch then lot of time and computing resources will be saved.
import com.sksamuel.elastic4s.ElasticClient
import com.sksamuel.elastic4s.ElasticDsl._
import org.elasticsearch.common.settings.ImmutableSettings
val settings = ImmutableSettings.settingsBuilder().put("cluster.name", "MYCLUSTER").build()
val client = ElasticClient.remote(settings, "11.11.11.11", 9300)
var ESMap = Map[String, List[String]]()
val topKReco = bestModel.get
// below step take 3 hours
.recommendProductsForUsers(30)
// below step takes 6 hours
.collect()
.foreach { r =>
var i = 1
var curr_user = r._1
r._2.foreach { r2 =>
item_ids(r2.product))
ESMap += i.toString -> List(r2.product.toString)
i += 1
}
client.execute {
index into "recommendations1" / "items" id curr_user fields ESMap
}.await
}
So now when I run this code without collect step I get following error :
Exception in thread "main" org.apache.spark.SparkException: Task not serializable
at org.apache.spark.util.ClosureCleaner$.ensureSerializable(ClosureCleaner.scala:315)
at org.apache.spark.util.ClosureCleaner$.org$apache$spark$util$ClosureCleaner$$clean(ClosureCleaner.scala:305)
at org.apache.spark.util.ClosureCleaner$.clean(ClosureCleaner.scala:132)
at org.apache.spark.SparkContext.clean(SparkContext.scala:1893)
at org.apache.spark.rdd.RDD$$anonfun$foreach$1.apply(RDD.scala:869)
at org.apache.spark.rdd.RDD$$anonfun$foreach$1.apply(RDD.scala:868)
at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:147)
at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:108)
at org.apache.spark.rdd.RDD.withScope(RDD.scala:286)
at org.apache.spark.rdd.RDD.foreach(RDD.scala:868)
at CatalogALS2$.main(CatalogALS2.scala:157)
at CatalogALS2.main(CatalogALS2.scala)
at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:57)
at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
at java.lang.reflect.Method.invoke(Method.java:606)
at org.apache.spark.deploy.SparkSubmit$.org$apache$spark$deploy$SparkSubmit$$runMain(SparkSubmit.scala:665)
at org.apache.spark.deploy.SparkSubmit$.doRunMain$1(SparkSubmit.scala:170)
at org.apache.spark.deploy.SparkSubmit$.submit(SparkSubmit.scala:193)
at org.apache.spark.deploy.SparkSubmit$.main(SparkSubmit.scala:112)
at org.apache.spark.deploy.SparkSubmit.main(SparkSubmit.scala)
Caused by: java.io.NotSerializableException: com.sksamuel.elastic4s.ElasticClient
Serialization stack:
- object not serializable (class: com.sksamuel.elastic4s.ElasticClient, value: com.sksamuel.elastic4s.ElasticClient#e4c4af)
- field (class: CatalogALS2$$anonfun$2, name: client$1, type: class com.sksamuel.elastic4s.ElasticClient)
- object (class CatalogALS2$$anonfun$2, <function1>)
at org.apache.spark.serializer.SerializationDebugger$.improveException(SerializationDebugger.scala:40)
at org.apache.spark.serializer.JavaSerializationStream.writeObject(JavaSerializer.scala:47)
at org.apache.spark.serializer.JavaSerializerInstance.serialize(JavaSerializer.scala:81)
at org.apache.spark.util.ClosureCleaner$.ensureSerializable(ClosureCleaner.scala:312)
So What I understand from this is, If somehow I can serialise com.sksamuel.elastic4s.ElasticClient Class then I can run this task parallelly without collecting data to the driver.
If I generalise this problem, then how can I serialise any class or function in scala to be operated on RDD ??
Found an answer for the same by using serialization like :
object ESConnection extends Serializable {
// Elasticsearch Client intiation
val settings = ImmutableSettings.settingsBuilder().put("cluster.name", "MyCluster").build()
lazy val client = ElasticClient.remote(settings, "11.11.11.11", 9300)
}
Then you can use it over RDD on executor without actually collecting data to driver as:
val topKReco = bestModel.get
.recommendProductsForUsers(30)
// no collect required now
.foreach { r =>
var i = 1
var curr_user = r._1
r._2.foreach { r2 =>
ESMap += i.toString -> List(r2.product.toString, item_ids(r2.product))
i += 1
}
ESConnection.client.execute {
index into "recommendation1" / "items" id curr_user fields ESMap
}.await
}
In continuation to Suraj's Answer
You should add the below dependency to the classpath for using ElasticClient class
// https://mvnrepository.com/artifact/com.sksamuel.elastic4s/elastic4s
libraryDependencies += "com.sksamuel.elastic4s" % "elastic4s" % "0.90.2.8"
I'm currently trying to extend a Machine Learning application that uses Scala and Spark. I'm using the structure of a previous project from Dieterich Lawson that I found on Github
https://github.com/dieterichlawson/admm
This project basically uses SparkContext to build an RDD of blocks of training samples, and then perform local computations on each of these sets (for example solving a linear system).
I was following the same scheme, but for my local computation I need to perform a L-BFGS algorithm on each block of training samples. In order to do so, I wanted to use the L-BFGS algorithm from the mlLib which has the following signature.
runLBFGS(RDD<scala.Tuple2<Object,Vector>> data, Gradient gradient,
Updater updater, int numCorrections, double convergenceTol,
int maxNumIterations, double regParam, Vector initialWeights)
As it says, the method takes as input an RDD[Object,Vector] of the training samples. The problem is that locally on each worker I no longer keep the RDD structure of the data. Therefore, I'm trying to use parallelize function of the SparkContext on each block of the matrix. But when I do this, I get a serializer exception. (The exact exception message is at the end of the question).
This is a detailed explanation on how I'm handling the SparkContext.
First, in the main application it is used to open a textfile and it is used in the factory of the class LogRegressionXUpdate:
val A = sc.textFile("ds1.csv")
A.checkpoint
val f = LogRegressionXUpdate.fromTextFile(A,params.rho,1024,sc)
In the application, the class LogRegressionXUpdate is implemented as follows
class LogRegressionXUpdate(val training: RDD[(Double, NV)],
val rho: Double) extends Function1[BDV[Double],Double] with Prox with Serializable{
def prox(x: BDV[Double], rho: Double): BDV[Double] = {
val numCorrections = 10
val convergenceTol = 1e-4
val maxNumIterations = 20
val regParam = 0.1
val (weights, loss) = LBFGS.runLBFGS(
training,
new GradientForLogRegADMM(rho,fromBreeze(x)),
new SimpleUpdater(),
numCorrections,
convergenceTol,
maxNumIterations,
regParam,
fromBreeze(x))
toBreeze(weights.toArray).toDenseVector
}
def apply(x: BDV[Double]): Double = {
Math.pow(1,2.0)
}
}
With the following companion object:
object LogRegressionXUpdate {
def fromTextFile(file: RDD[String], rho: Double, blockHeight: Int = 1024, #transient sc: SparkContext): RDF[LogRegressionXUpdate] = {
val fns = new BlockMatrix(file, blockHeight).blocks.
map(X => new LogRegressionXUpdate(sc.parallelize((X(*,::).map(fila => (fila(-1),fromBreeze(fila(0 to -2))))).toArray),rho))
new RDF[LogRegressionXUpdate](fns, 0L)
}
}
This constructor is causing a serialization error though I'm not really needing the SparkContext to build each RDD locally. I've searched for solutions to this problem and adding #transient didn't solve it.
Then, my question is: is it really possible to build these "second layer RDDs" or I'm forced to perform a non distributed version of the L-BFGS algorithm.
Thanks in advance!
Error Log:
Exception in thread "main" org.apache.spark.SparkException: Task not serializable
at org.apache.spark.util.ClosureCleaner$.ensureSerializable(ClosureCleaner.scala:315)
at org.apache.spark.util.ClosureCleaner$.org$apache$spark$util$ClosureCleaner$$clean(ClosureCleaner.scala:305)
at org.apache.spark.util.ClosureCleaner$.clean(ClosureCleaner.scala:132)
at org.apache.spark.SparkContext.clean(SparkContext.scala:1891)
at org.apache.spark.rdd.RDD$$anonfun$map$1.apply(RDD.scala:294)
at org.apache.spark.rdd.RDD$$anonfun$map$1.apply(RDD.scala:293)
at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:148)
at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:109)
at org.apache.spark.rdd.RDD.withScope(RDD.scala:286)
at org.apache.spark.rdd.RDD.map(RDD.scala:293)
at admm.functions.LogRegressionXUpdate$.fromTextFile(LogRegressionXUpdate.scala:70)
at admm.examples.Lasso$.run(Lasso.scala:96)
at admm.examples.Lasso$$anonfun$main$1.apply(Lasso.scala:70)
at admm.examples.Lasso$$anonfun$main$1.apply(Lasso.scala:69)
at scala.Option.map(Option.scala:145)
at admm.examples.Lasso$.main(Lasso.scala:69)
at admm.examples.Lasso.main(Lasso.scala)
at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)
at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
at java.lang.reflect.Method.invoke(Method.java:497)
at com.intellij.rt.execution.application.AppMain.main(AppMain.java:140)
Caused by: java.io.NotSerializableException: org.apache.spark.SparkContext
Serialization stack:
- object not serializable (class: org.apache.spark.SparkContext, value: org.apache.spark.SparkContext#20576557)
- field (class: admm.functions.LogRegressionXUpdate$$anonfun$1, name: sc$1, type: class org.apache.spark.SparkContext)
- object (class admm.functions.LogRegressionXUpdate$$anonfun$1, <function1>)
at org.apache.spark.serializer.SerializationDebugger$.improveException(SerializationDebugger.scala:40)
at org.apache.spark.serializer.JavaSerializationStream.writeObject(JavaSerializer.scala:47)
at org.apache.spark.serializer.JavaSerializerInstance.serialize(JavaSerializer.scala:81)
at org.apache.spark.util.ClosureCleaner$.ensureSerializable(ClosureCleaner.scala:312)
... 21 more
RDDs should only be accessed from the driver. Whenever you call something like
myRDD.map(someObject.someMethod)
spark serializes whatever that is needed for the computation of someMethod, and sends it to the workers. There, the method is deserialized and then it runs on each partition independently.
You, however, try to use a method that itself uses spark: you attempt to create a new RDD. However, this is not possible since they can only be created in the driver. The error you see is spark's attempt to serialize the spark context itself since it is needed for the computation at each block. More about serialization can be found in the first answer to this question.
"... though I'm not really needing the SparkContext to build each RDD locally" - actually this is exactly what you are doing when calling sc.parallelize. Bottom line - you need to find (or write) a local implementation of L-BFGS.