Fusing execution flow and exception flow in Scala - scala

I am using the following to wrap a Boolean function and return its success status:
def wrapper(wrapped: => Boolean) : Boolean = { // this form of prototype takes a function by name
try {
return wrapped
} catch {
case anyException : Throwable =>
log(anyException.toString)
return false }
}
The rationale being that the wrapper function should return an overall binary status, regardless of whether the wrapped function failed to capture its own unexpected exceptions and do the same. So the wrapper conveys success and failure via its Boolean return value. It can also be an Option for function result data, rather than a Boolean.
How would you accomplish this in other, even better ways, in Scala?
I note that one rationale (of few others) for this code, admittedly has been that try catch blocks are cumbersome in flow control blocks. Another has been that I tend to use this pattern a lot in a certain area of my project.

You can use Try. Although it will catch only NonFata(scala.util.control.NonFatal) but in most cases this is what you do want.
import scala.util.Try
def wrapper(predicate: => Boolean) : Boolean = {
Try(predicate) getOrElse false
}
Or another way (For example if you really do want to catch any Throwable)
import scala.util.control.Exception._
def wrapper(predicate: => Boolean) : Boolean = {
catching(classOf[Throwable]) opt predicate getOrElse false
}

Scala provides Try feature, which is intended to be used in this occasions.
Notice that keeping your current wrapper leads to potential several errors. When you get a false result, you cannot know if it came from an application exception or a simple false evaluation. Thus, you can't properly handle any exception in your system, which may lead to multiple inconsistencies. Moreover, when you get a false result, your application internal state could be considered as unknown, making it very difficut to look into the box to know if the cat is dead or alive.
To solve this, scala's Try feature will handle this possible states for you, returning -in your case- a Success(elem: Boolean) in case your predicate effectively executes, and a Failure(ex: Throwable) in case an exception was thrown during execution. Then, you can use pattern matching to find out which was the case:
import scala.util.{Try, Success, Failure}
[...]
Try(predicate) match {
case Success(bool) => bool
case Failure(ex) => /* Do something to handle ex */
}
This somehow eliminates the need of your wrapper, for you can keep Try's result and then either match it or get it's result whenever you need to. And, as seen in previous answers, there is a rather complete set of operations you can use to handle all this cases in a more fashionable way.

Related

Use Future.successful(None) vs Future.failed(new Exception()) for an API that may return no results?

What is the idiomatic way in Scala to type an API that may or may not return results?
I can simply type to Future[Option[A]] and return a None if there is no results, but this will make things a little more verbose for API clients I think because it has to do some pattern matching (or other techniques like folding) over the Option returned.
trait SomeAPI {
def fetch(): Future[Option[String]]
}
object APIImpl {
def asyncDBCall(): Future[List[String]] = ???
override def fetch(): Future[Option[String]] = asyncDBCall().map(r => if (r.isEmpty) None else Some(r.head)
}
However, Futures already give us a way to say that there are no results making it fail. But I don't know if this is a proper or expressive way of say that the call doesn't return results.
trait SomeAPI {
def fetch(): Future[String]
}
class NoResultsException extends Exception
object APIImpl extends SomeAPI {
def asyncDBCall(): Future[List[String]] = ???
override def fetch(): Future[String] = asyncDBCall().map(r => if (r.isEmpty) throw new NoResultsException() else r.head)
}
At first it seems that both options are acceptable and the final decision may be just about personal preference, but maybe I'm missing something and make a Future fail is not a good option.
Exceptions should be reserved for errors. If the API may or may not returns results, and both cases are considered normal, then the API should use Option.
If that makes it more verbose by forcing the client to handle both situations, that's good, because the client should handle both situations. Exceptions are good when you don't want to force the client code to handle an exceptional case (unexpected error) which should probably cascade and be handled by an error handler.
Now, if lack of results truly indicates that something went wrong, then an exception would be appropriate.
I'd expect clients want to treat "success, no results" and failure differently, generally speaking (e.g. retry in the second case, but not the first). If you denote the first with a failed future, you make verbosity for the clients worse, not better: they just need to check the exception instead of the success, and the API isn't helping them to be aware of that like Future[Option[A]] would.
If you really worry about verbosity, you could add custom extractors or methods for the clients to use if they want, e.g.
implicit class FutureOption[A](future: Future[Option[A]]) {
def mapOpt[B](handleSuccessWithResult: A => B, handleSuccessWithNoResult: () => B) = Future.map {
case Some(x) => onSuccessWithResult(x)
case None => onSuccessWithNoResult()
}
}
The others are right. Failures are not a good way to describe the lack of a concrete result, if this is part of regular operation.
Scala gives you another possibility to explicitly note, that there may be no results, sealed traits.
sealed trait MyOperationReturn
case object OkNoResult
case class OkWithStringResponse(data: String) extends MyOperationReturn
case class OkWithIntResponse(data: Int) extends MyOperationReturn
The user can then just pattern match. This option is especially handy, if you have either multiple return types (not only two) and no natural empty return type (like Seq.empty)

Scala Constructor/Method Parameter Checking

I wanted to check some best practices of Scala programming, since I am new to Scala. I read online about how Scala doesn't typically use exceptions except for "exceptional" circumstances (which doesn't include parameter checking). Right now in my project I am using a lot of require, so I am wondering what the better way of type checking would be.
For example, if I have a class
class Foo(String bar){
require(StringUtils.isNotEmpty(bar), "bar can't be empty")
}
what are my alternatives to checking bar? Do I create a companion object like so
Object Foo {
def apply(bar: String) = Try[Foo] {
bar match = {
case null => Failure("can't be null")
//rest of checks
case _ => Success[Foo]
}
}
Or should I use Option instead?
In addition, for scala methods, how do I check the parameter of the method? If I already return an Option, do I just return an empty Option if I get a bad parameter? Wouldn't that mean I have to check for an empty Option when I use the return of the method and wouldn't throwing an exception allow for a more specific message? (e.g. runtime exception can't use nulls).
I think the Success part of your companion object would return the Foo() object as well?
Object Foo {
def apply(bar: String) = Try[Foo] {
bar match = {
case null => Failure("can't be null")
//rest of checks
case _ => Success[Foo](new Foo(bar))
}
}
To use it you might do something with the Success you get from Foo(bar):
val hehe = Foo(bar).map(foo => foo.someString()).getOrElse('failed')
The Try methods will automatically wrap exceptions generated by someString() or whatever else that you're doing inside it inside Failures. If you wanted to check the parameters of foo.someString(), you'd do something similar to your apply() method. It isn't that much different than throwing exceptions on conditions but I think it's nicer cause the "catch blocks" would be in recover() or recoverWith(). You can always exit the Try using getOrElse() if your code wasn't designed to chain Trys from top to bottom.

Picking the right exception handling in scala

I'm new to Scala, being slightly confused at the various ways to handle exceptions and looking for best-practice advice on the topic. I'm writing a simple method to retrieve a Customer using an existing blocking SDK. The possible outcomes are:
Customer is found
Customer is not found (comes back as a NotFoundException from the SDK)
Error while talking to remote server (SDK throws some other exception)
So I want my method to have a return type Future[Option[Customer]], and return for each case above:
Successful Future: Some(customer)
Successful Future: None
Failed Future
Here is what I wrote using try/catch:
private def findCustomer(userId: Long): Future[Option[Customer]] = future {
try {
Some(gateway.find(userId))
} catch {
case _: NotFoundException => None
}
}
This works fine and seems clean to me, but doesn't seem to be really the "Scala way" to do it - I've been told to avoid using try/catch. So I've been looking for a way to rewrite it using a Try instead.
Here are 2 variants that (I think) behave exactly the same, using a Try.
Variant A:
private def findCustomer(userId: Long): Future[Option[Customer]] = future {
Try(
Some(gateway.find(userId))
).recover {
case _: NotFoundException => None
}.get
}
Variant B:
private def findCustomer(userId: Long): Future[Option[Customer]] = future {
Try(
Some(gateway.find(userId))
).recover {
case _: NotFoundException => None
}
} flatMap {
case Success(s) => Future.successful(s)
case Failure(f) => Future.failed(f)
}
I'm not a huge fan of A (even though it's more concise than B) since the .get seems a bit treacherous. B is definitely the most explicit but mapping the Try cases to corresponding Future outcomes seems boring.
How would an experienced Scala programmer write this?
I think your initial version using try/catch is perfectly fine, because it's a wrapper around an existing SDK.
Alternatively, you can use the recover method on Future:
def findCustomer(userId: Long): Future[Option[Customer]] =
Future(Option(gateway.find(userId))).recover {
case e: NotFoundException => None
}
One option is to avoid chaining Try and Future. In a sense, a future is an asynchronous Try.
You could use Future[Customer] directly and consider NotFoundException as something to recover from rather than a None value. Normally, you would chain operation on the future itself, with no need to deal with the failure cases (by mapping it, etc). It all depends on how you are going to use it (how your logic branches when the future is completed). In other words, maybe it seems convoluted to you because it is, and you are forcing it to be by forcing the Future[Option[Customer]] return type.
The ability to do chain multiple operations and carry on with computing if and only if all if going all right is the nice Scala feature here (especially on for comprehensions, etc).
You might be looking for:
Future.fromTry(myTry)
So for your example you might do:
Future.fromTry {
Try(Some(gateway.find(userId))).recover {
case _: NotFoundException => None
}
}
To only catch the NotFoundException, as in your solution. The only problem here is that the method won't be executed asynchronously. If that is necessary, consider using Future.recover, as suggested by Ionut.
Another idiomatic option worth mentioning here is to use Either[F, S], where S is the type of the successful return, and F can hold the errors (which you might want to propagate). So you could use Either[ Exception, Option[String]] or Either[String, Option[String]] where the first String is an error message.
If you're ready to adopt some scalaz. disjunction from scalaz is very useful and natural in handling erronous scenarios. It's like scala Either but scalaz disjunction \/ is right biased. you'll have success value on the right and exception on left. wrapping your code block with \/.fromTryCatch returns exception on the left side of disjunction. right will always have success value. mapping over disjunction is easiser than Scala Either since disjunction is right biased and easily gives you value from right.
import scalaz.\/
private def findCustomer(userId: Long): Future[\/[Throwable,Option[Customer]] ]= future {
\/.fromTryCatch {
Some(gateway.find(userId))
}
}

Scala: How to return a Some or Option

I have the following piece of code that I am trying to enhance:
I am using the java.nio.file package to represent a directory or a file as a Path.
So here goes:
import java.nio.file.{Paths,DirectoryStream,Files,
Path,DirectoryIteratorException}
val path: Path = Paths.get(directoryPath)
var directoryStream: Option[DirectoryStream[Path]] = None
// so far so good
try {
directoryStream = Some(Files.newDirectoryStream(pathO))
// this is where i get into trouble
def getMeDirStream: DirectoryStream[Path] =
if (!directoryStream.isEmpty && directoryStream.isDefined)
getMeDirStream.get
else
None
// invoke the iterator() method of dstream here
}
The above piece of code will not compile because I do not know what to return in the else, and right now, for the life of me, I can only come up with None, which the compiler simply does not like and I would like to learn what should be its replacement.
I want this example to be a learning lesson of Option and Some for me.
Okay, this is where I choke. I would like to check if the directoryStream is not empty and is defined, and then if this is the case, I would like to invoke getMeDirStream.get to invoke the iterator() method on it.
The API for Option tells me that invoking the get() method could result in a java.util.NoSuchElementException if the option is empty.
If the directoryStream is empty I want to return something and not None, because IntelliJ is telling me that "Expression of type None.type doesn't conform to expected type DirectoryStream[Path]".
Now, I am being all naive about this.
I would like to know the following:
What should I return in the else other than None?
Should I wrap the getMeDirStream.get in a try-catch with a java.util.NoSuchElementException, even though I am checking if the directoryStream is empty or not.?
What is the purpose of a try-catch in the getMeDirStream.get, if there is indeed such a need?
How can I clean up the above piece of code to incorporate correct checks for being isDefined and for catching appropriate exceptions?
Once I know what to return in the else (and after putting in the appropriate try-catch block if necessary), I would like to invoke the iterator() method on getMeDirStream to do some downstream operations.
Some and None are subtypes of Option, but to be more correct, they are actually two different cases of Option or data constructors. In other words, even though Scala allows you to directly invoke a Some or a None you should still regard their type to be Option. The more important thing to take from this is that you should never under any circumstance invoke Option#get as it is unsafe.
The intention of Option is to indicate the possibility that a value does not exist. If you care about the errors, then you should probably look at using Either instead (or Scalaz's Either called \/).
You can keep the computation within the Option context and then only extract the value later, or provide a default.
def fromTryCatch[A](a: => A): Either[Throwable, A] = try { Right(a) } catch { case e: Throwable => Left(e) }
val getMeDirStream: Option[java.util.Iterator[Path]] =
for {
path <- fromTryCatch(Paths.get(directoryPath)).toOption
directoryStream <- fromTryCatch(Files.newDirectoryStream(pathO)).toOption
} yield directoryStream.iterator()
Later, or right after, you can get the iterator, or provide a default value:
val iterator = getMeDirStream.getOrElse(java.util.Collections.emptyIterator[Path])
Your specific questions are difficult to address because it's unclear exactly what you're trying to achieve. In particular, when you ask what the purpose of the try block is... Well, you wrote it, so only you can answer that.
In general, you never call get on an Option. You either use pattern matching:
option match {
case Some(value) => /* ... */
case None => /* ... */
}
or you use methods like map, flatMap, and foreach (or the equivalent comprehension syntax that gpampara's code uses).
My revision of gpampara's answer:
import scala.collection.convert.wrapAll._
import scala.util.Try
import java.nio.file.{Paths, Files, Path}
val getMeDirStream: Option[Iterator[Path]] =
for {
path <- Try(Paths.get("")).toOption
directoryStream <- Try(Files.newDirectoryStream(path)).toOption
} yield directoryStream.iterator
Changes:
Using Try(...).toOption instead of Either
Using implicits in scala.collection.convert to return the result as a Scala Iterator.
Try is similar to Option. Instead of Some and None, it has Success and Failure subtypes, and the failure case includes a Throwable, whereas None is just a singleton with no additional information.

Get Option value or throw an exception

Given an Option, what is the idiomatic way to get its value or throw an exception trying?
def foo() : String = {
val x : Option[String] = ...
x.getOrException()
}
A throw "statement" is really an expression in Scala, and it has type Nothing, which is a subtype of every other type. This means you can just use plain old getOrElse:
def myGet[A](oa: Option[A]) = oa.getOrElse(throw new RuntimeException("Can't."))
You really, really shouldn't be doing this, though.
(EDIT: this is not the best or most idiomatic way to do it. I wrote it when I was not familiar with Scala. I leave it here for an example of how not to do it. Nowadays I would do as #TravisBrown)
I think it really boils down to two things:
how sure are you that the value is there?
how do you want to react if it isn't?
If at that point in your code you expect the value to be there, and in the remote case that it isn't you want your program to fail fast, then I would only do a normal get and let Scala throw a NoSuchElementException if there was no value:
def foo() : String = {
val x : Option[String] = ...
x.get
}
If you want to handle the case differently (throw your own exception) I think a more elegant way would look like this:
def foo(): String = {
val x: Option[String] = None
x match {
case Some(value) => value
case None => throw new MyRuntimeException("blah")
}
}
And of course if you want to supply your own alternative value for the case that the Option is None you would just use getOrElse:
def foo(): String = {
val x: Option[String] = None
x.getOrElse("my alternative value")
}
I hope this will help you to understand how to represent errors (and generally effects) using types.
Error handling strategies in functional Scala
Use Option to return optional values. For example - fail to find entity in storage.
Use Option(possiblyNull) to avoid instances of Some(null).
Use Either[Error, T] to report expected failure. For example - email format is wrong, cannot parse a string to a number, etc.
Model your errors as ADTs (simply speaking kind of type hierarchies) to use it, for example, on the Left of the Either to represent more complex error scenarios.
Throw Exception only to signal unexpected and not-recoverable failures. Like missing config file.
Use Either.catchOnly or Try or Cats.IO (advanced) rather than a catch block for handling unexpected failures. Hint: You can still use ADT but extend them from throwables. More about Either vs Try.
Use Validated data-type from Cats lib to accumulate errors rather than fail-fast (Either), but prefer Either's on module-level to simplify the composition of the program (to have the same types). For example - form data validation, parsing errors accumulation.
Use mentioned types and don't optimize program preemptively - since most probably, bottle-necks would be in business logic, not in effect types.
Such an approach will simplify maintenance and updates of your code since you can reason about it without going to implementation specifics (aka local-reasoning). Also - reduce bugs - you cannot miss an error in the type. And compose the program easier (with help of map, flatMap and other combinators) - since it's simpler on type level, rather than with non-local exceptions and side-effects.
More about learning functional Scala.
But be aware that sometimes with this approach types could stack up and it could become harder to compose things. Given, for example: x: Future[Either[Error, Option[T]]] What you can do:
Use map and flatMap in combination with pattern-matching to compose different values of such types, for example:
x.faltMap { case Right(Some(v)) => anotherFuture(v); case Left(er) => ... }
If it doesn't help you can try to use MonadTransformers (don't be scared of the name, it's just wrappers around the effect types like Either and Future)
Also, an option is to simplify your errors ADT by extending them from the Throwable to unify it with Future, then it'll be Future[Option[T]]
And finally, in your case one option will be:
def foo() : Either[Error, String] = {
val x : Option[String] = ...
x match {
case Some(v) => Right(v)
case None => Left(Error(reason))
}
}
Just use the .get method.
def get[T](o:Option[T]) = o.get
It will throw a NoSuchElementException if o is an instance of None.
Basically, I would work with options like this:
def addPrint(oi:Option[Int]) = oi.map(_+1).foreach(println)
addPrint(Some(41))
addPrint(Some(1336))
addPrint(None)
to avoid your specific question.
Scala now support this operation on maps using getOrElse() method, see documentation here
As pointed out already, throwing an exception in Scala is an expression as well.
So you can do the following:
myMap.getOrElse(myKey, throw new MyCustomException("Custom Message HERE")