why are wavelet coefficients zeros after decomposition - matlab

I am learning wavelet theory for image processing. To understand the theory, I write one Matlab program to decompose one black-white image. The program is as follows
Image = zeros(256, 256, 'uint8');
Image(101:200, 101:200) = 255;
figure; imshow(Image);
[cA1, cH1, cV1, cD1] = dwt2(Image, 'db1');
Image1 = [cA1, cH1; cV1, cD1];
figure; imshow(Image1, []);
[cA1, cH1, cV1, cD1] = dwt2(Image, 'db2');
Image1 = [cA1, cH1; cV1, cD1];
figure; imshow(Image1, []);
The first decomposition using the argument db1 produces zeros for all wavelet coefficients. The black-white image has the transition from 0 to 255 along horizontal and vertical directions and should have high-frequency component. Why are zero wavelet coefficients generated? If I change the argument from db1 to db2, the result will show horizontal and vertical lines in the subbands.

If you recall, db1 is the Haar Wavelet. The Haar Wavelet takes either an average of pixels within local windows for the approximation coefficients (or the LL band), or a difference of pixels within local windows for the detail coefficients (or the LH, HL and HH bands).
Be advised that the input image that you specified only consists of two intensities: 0 and 255. Also, you set a square grid within this image to be 255 and it is uniformly shaped.
For self-containment, this is what your test image looks like:
This uniformly shaped object within a square image is important as part of the reasoning why you are not getting any output for the detail images (HL, LH, and HH).
The best way to describe why you're seeing an output for db2 and not db1 can be shown visually.
This slide is from the University of Toronto's CS 320: Introduction to Visual Computing course, specifically, the Discrete Wavelet Transform lecture:
You are well aware that when you take the 2D DWT, you produce 4 sub-images that are half the resolution of the original image. The first output of dwt2 are the approximation coefficients where each output pixel is an average of a 2 x 2 window. The other outputs (second, third and fourth) are detail windows that take two pixels within the window and subtracts these with two other pixels in the window.
As such, the reason why you are not getting an output with db1 is because all of your calculations for the detail images will cancel out. Specifically, you will get 2 x 2 windows of either completely 0, or completely 255, and when you calculate the detail images, you will get 0s for the output regardless. You would take add two 0 values, or two 255 values and you would subtract these two 0 values, or 255 values respectively, thus causing the output to be 0 regardless.
The db2 wavelet is a more complicated transform which is a weighted sum of non-uniform coefficients and so you will certainly get outputs for the detail images rather than just a simple differencing of the 2 x 2 windows.
I would like to stress that if you have a more complicated shape that is non-uniform, db1 will certainly not give you a zero output. Try it on any test image that comes with MATLAB, like with cameraman.tif.
Hope this helps!

Related

Looking for a tool that extracts data from a plot figure ( here 2D contours from Covariance matrix or Markov chains) and reproduce the original figure

I am looking for an application or a tool which is able for example to extract data from a 2D contour plot like below :
I have seen https://dash-gallery.plotly.host/Portal/ tool or https://plotly.com/dash/ , https://automeris.io/ , but I have test them and this is difficult to extract data (here actually, the data are covariance matrices with ellipses, but I would like to extend it if possible to Markov chains).
If someone could know if there are more efficient tools, mostly from this kind of 2D plot.
I am also opened to commercial applications. I am on MacOS 11.3.
If I am not on the right forum, please let me know it.
UPDATE 1:
I tried to apply the method in Matlab with the script below from this previous post :
%// Import the data:
imdata = importdata('Omega_L_Omega_m.png');
Gray = rgb2gray(imdata.cdata);
colorLim = [-1 1]; %// this should be set manually
%// Get the area of the data:
f = figure('Position',get(0,'ScreenSize'));
imshow(imdata.cdata,'Parent',axes('Parent',f),'InitialMagnification','fit');
%// Get the area of the data:
title('Click with the cross on the most top left area of the *data*')
da_tp_lft = round(getPosition(impoint));
title('Click with the cross on the most bottom right area of the *data*')
da_btm_rgt = round(getPosition(impoint));
dat_area = double(Gray(da_tp_lft(2):da_btm_rgt(2),da_tp_lft(1):da_btm_rgt(1)));
%// Get the area of the colorbar:
title('Click with the cross within the upper most color of the *colorbar*')
ca_tp_lft = round(getPosition(impoint));
title('Click with the cross within the bottom most color of the *colorbar*')
ca_btm_rgt = round(getPosition(impoint));
cmap_area = double(Gray(ca_tp_lft(2):ca_btm_rgt(2),ca_tp_lft(1):ca_btm_rgt(1)));
close(f)
%// Convert the colormap to data:
data = dat_area./max(cmap_area(:)).*range(colorLim)-abs(min(colorLim));
It seems that I get data in data array but I don't know how to exploit it to reproduce the original figure from these data.
Could anyone see how to plot with Matlab this kind of plot with the data I have normally extracted (not sure the Matlab. script has generated all the data for green, orange and blue contours, with each confidence level, that is to say, 68%, 95%, 99.7%) ?
UPDATE 2: I have had first elements of answer on the following link :
partial answer but not fully completed
I cite elements of the approach :
clc
clear all;
imdata = imread('https://www.mathworks.com/matlabcentral/answers/uploaded_files/642495/image.png');
close all;
Gray = rgb2gray(imdata);
yax=sum(conv2(single(Gray),[-1 -1 -1;0 0 0; 1 1 1],'valid'),2);
xax=sum(conv2(single(Gray),[-1 -1 -1;0 0 0; 1 1 1]','valid'),1);
figure(1),subplot(211),plot(xax),subplot(212),plot(yax)
ROIy = find(abs(yax)>1e5);
ROIyinner = find(diff(ROIy)>5);
ROIybounds = ROIy([ROIyinner ROIyinner+1]);
ROIx = find(abs(xax)>1e5);
ROIxinner = find(diff(ROIx)>5);
ROIxbounds = ROIx([ROIxinner ROIxinner+1]);
PLTregion = Gray(ROIybounds(1):ROIybounds(2),ROIxbounds(1):ROIxbounds(2));
PLTregion(PLTregion==255)=nan;
figure(2),imagesc(PLTregion)
[N X]=hist(single(PLTregion(:)),0:255);
figure(3),plot(X,N),set(gca,'yscale','log')
PLTitems = find(N>2000)% %limit "color" of interest to items with >1000 pixels
PLTitems = 1×10
1 67 90 101 129 132 144 167 180 194
PLTvalues = X(PLTitems);
PLTvalues(1)=[]; %ignore black?
%test out region 1
for ind = 1:numel(PLTvalues)
temp = zeros(size(PLTregion));
temp(PLTregion==PLTvalues(ind) | (PLTregion<=50 & PLTregion>10))=255;
% figure(100), imagesc(temp)
temp = bwareaopen(temp,1000);
temp = imfill(temp,'holes');
figure(100), subplot(3,3,ind),imagesc(temp)
figure(101), subplot(3,3,ind),imagesc(single(PLTregion).*temp,[0 255])
end
If someone could know how to improve these first interesting results, this would be fine to mention it.
Restating the problem - My understanding given the different comments and your updates is the following:
someone other than you is in possession of data, which as it happens is 2D data, i.e. an Nx2 matrix;
using the covariance matrix, they are effectively saying something about the joint distribution of these two dimensions, specifically about the variance;
if they assume a Gaussian distribution, as is implied by your comment regarding 68%, 95% and 99.7% for 1sigma, 2sigma and 3sigma, they can draw ellipses which represent the 2D-normal distribution: these are in fact some of the contour lines associated with the 3D "bell" surface;
you have obtained the contour lines in a graph and are trying to obtain the covariance matrix (not the original data...);
you are concerned about the complexity of having to extract the information from each ellipsis.
Partial answer:
It is impossible to recover the original data, I hope you are already aware of that, but in case you are not let's just note that the covariance matrix is a summary statistic of the data, much like the average, and although it says something about the data many different datasets could happen to have the same summary statistic (the same way many different sets of numbers can give you an average of 10).
It is possible to somewhat recover the covariance matrix, i.e. the 3 numbers a, b and c in the matrix [a,b;b,c], though the error in doing so will likely be large because of how imprecise the pixel representation is. Essentially, you will be looking for the dimensions of the two axes, for the variances, as well as the angle of one of the axes, for the covariance.
Unless I am mistaken, under the Gaussian assumption above, you only need to measure this for one of the three ellipses, and then factor by whatever number of sigmas that contour represents. Here you might want to either use the best-defined ellipse, or attempt to use the largest one, which will provide the maximum precision for your measurements (cf. pixelization).
Also, the problem of finding the axes and angle for the ellipse need not be as complex as what it seems like in your first trials: instead of trying to find the contour of the ellipses, find the bounding rectangle.
In order to further simplify this process, if your images are color-coded the way you show, then a filter on blue pixels might be enough in terms of image processing. Then simply take the minimum and maximum (x,y) coordinates in order to obtain the bounding rectangle.
Once the bounding rectangle is obtained, find the equation to your ellipse (that's a question for a math group, but you could start here for example).
Happy filtering!

How to compute histogram using three variables in MATLAB?

I have three variables, e.g., latitude, longitude and temperature. For each latitude and longitude, I have corresponding temperature value. I want to plot latitude v/s longitude plot in 5 degree x 5 degree grid , with mean temperature value inserted in that particular grid instead of occurring frequency.
Data= [latGrid,lonGrid] = meshgrid(25:45,125:145);
T = table(latGrid(:),lonGrid(:),randi([0,35],size(latGrid(:))),...
'VariableNames',{'lat','lon','temp'});
At the end, I need it somewhat like the following image:
Sounds to me like you want to scale your grid. The easiest way to do this is to smooth and downsample.
While 2d histograms also bin values into a grid, using a histogram is not the way to find the mean of datapoints in a smooth grid. A histogram counts the occurrence of values in a set of ranges. In a 2d example, a histogram would take the input measurements [1, 3, 3, 5] and count the number of ones, the number of threes, etc. A 2d histogram will count occurrences of pairs of numbers. (You might want to use histogram to help organize a measurements taken at irregular intervals, but that would be a different question)
How to smooth and downsample without the Image Processing Toolbox
Keep your data in the 2d matrix format rather than reshaping it into a table. This makes it easier to find the neighbors of each grid location.
%% Sample Data
[latGrid,lonGrid] = meshgrid(25:45,125:145);
temp = rand(size(latGrid));
There are many tools in Matlab for smoothing matrices. If you want to have the mean of a 5x5 window. You can write a for-loop, use a convolution, or use filter2. My example uses convolution. For more on convolutional filters, I suggest the wikipedia page.
%% Mean filter with conv2
M = ones(5) ./ 25; % 5x5 mean or box blur filter
C_temp = conv2(temp, M, 'valid');
C_temp is a blurry version of the original temperature variable with a slightly smaller size because we can't accurately take the mean of the edges. The border is reduced by a frame of 2 measurements. Now, we just need to take every fifth measurement from C_temp to scale down the grid.
%% Subsample result
C_temp = C_temp(1:5:end, 1:5:end);
% Because we removed a border from C_temp, we also need to remove a border from latGrid and lonGrid
[h, w] = size(latGrid)
latGrid = latGrid(5:5:h-5, 5:5:w-5);
lonGrid = lonGrid(5:5:h-5, 5:5,w-5);
Here's what the steps look like
If you use a slightly more organized, temp variable. It's easier to see that the result is correct.
With Image Processing Toolbox
imresize has a box filter method option that is equivalent to a mean filter. However, you have to do a little calculation to find the scaling factor that is equivalent to using a 5x5 window.
C_temp = imresize(temp, scale, 'box');

How to compute the mean value of all sub-imges in image I

I have a task that is compute the mean value of a sub-image that extract from input image I. Let explain my task. I have a image I (i.e, 9x9), and a window (i.e size 3x3). The window will be run from top-left to bottom-right of image. Hence, it will extract the input image into many subimage. I want to compute the mean value of these sub-images. Could you suggest to me some matlab code to compute it.
This is my solution. But it does not work.
First, I defined a window as Gaussian
Second, the Gaussian function will run from top-left to bottom-right using convolution function. (Note that, it must be use Gaussian Kernel)
Compute the mean value of each sub-window
%% Given Image I,Defined a Gaussian Kernel
sigma=3;
K=fspecial('gaussian',round(2*sigma)*2+1,sigma);
KI=conv2(I,K,'same');
%% mean value
mean(KI)
The problem in here is that mean value off all sub-image will have size similar image I. Because each pixel in image will made a sub-image. But my code returns only a value. What is problem?
If it is your desire to compute the average value in each sub-image once you filter your image with a Gaussian kernel, simply convolve your image with a mean or average filter. This will collect sub-images within your original image and for each output location, you will compute the average value.
Going with your initial assumption that the mask size is 3 x 3, simply use conv2 in conjunction with a 3 x 3 mask that has all 1/9 coefficients. In other words:
%// Your code
%% Given Image I,Defined a Gaussian Kernel
sigma=3;
K=fspecial('gaussian',round(2*sigma)*2+1,sigma);
KI=conv2(I,K,'same');
%// New code
mask = (1/9)*ones(3,3);
out = conv2(KI, mask, 'same');
Each location in out will give you what the average value was for each 3 x 3 sub-image in your Gaussian filtered result.
You can also create the averaging mask by using fspecial with the flag average and specifying the size / width of your mask. Given that you are already using it in your code, you already know of its existence. As such, you can also do:
mask = fspecial('average', 3);
The above code assumes the width and height of the mask are the same, and so it'll create a 3 x 3 mask of all 1/9 coefficients.
Aside
conv2 is designed for general 2D signals. If you are looking to filter an image, I recommend you use imfilter instead. You should have access to it, since fspecial is part of the Image Processing Toolbox, and so is imfilter. imfilter is known to be much more efficient than conv2, and also makes use of Intel Integrated Performance Primitives (Intel IPP) if available (basically if you are running MATLAB on a computer that has an Intel processor that supports IPP). Therefore, you should really perform your filtering this way:
%// Your code
%% Given Image I,Defined a Gaussian Kernel
sigma=3;
K=fspecial('gaussian',round(2*sigma)*2+1,sigma);
KI=imfilter(I,K,'replicate'); %// CHANGE
%// New code
mask = fspecial('average', 3);
out = imfilter(KI, mask, 'replicate'); %// CHANGE
The replicate flag is for handling the boundary conditions. When your mask goes out of bounds of the original image, replicate simply replicates the border of each side of your image so that the mask can fit comfortably within the image when performing your filtering.
Edit
Given your comment, you want to extract the subimages that are seen in KI. You can use the very powerful im2col function that's part of the Image Processing Toolbox. You call it like so:
B = im2col(A,[m n]);
A will be your input image, and B will be a matrix that is of size mn x L where L would be the total number of possible sub-images that exist in your image and m, n are the height and width of each sub-image respectively. How im2col works is that for each sub-image that exists in your image, it warps them so that it fits into a single column in B. Therefore, each column in B produces a single sub-image that is warped into a column. You can then use each column in B for your GMM modelling.
However, im2col only returns valid sub-images that don't go out of bounds. If you want to handle the edge and corner cases, you'll need to pad the image first. Use padarray to facilitate this padding. Therefore, to do what you're asking, we simply do:
Apad = padarray(KI, [1 1], 'replicate');
B = im2col(Apad, [3 3]);
The first line of code will pad the image so that you have a 1 pixel border that surrounds the image. This will allow you to extract 3 x 3 sub-images at the border locations. I use the replicate flag so that you can simply duplicate the border pixels. Next, we use im2col so that you get 3 x 3 sub-images that are then stored in B. As such, B will become a 9 x L matrix where each column gives you a 3 x 3 sub-image.
Be mindful that im2col warps these columns in column-major format. That means that for each sub-image that you have, it takes each column in the sub-image and stacks them on top of each other giving you a 9 x 1 column. You will have L total sub-images, and these are concatenated horizontally to produce a 9 x L matrix. Also, keep in mind that the sub-images are read top-to-bottom, then left-to-right as this is the nature of MATLAB operating in column-major order.

Color correcting images in MATLAB

I have 2 images im1 and im2 shown below. Theim2 picture is the same as im1, but the only difference between them is the colors. im1 has RGB ranges of (0-255, 0-255, 0-255) for each color channel while im2 has RGB ranges of (201-255, 126-255, 140-255). My exercise is to reverse the added effects so I can restore im2 to im1 as closely as I can. I have 2 thoughts in mind. The first is to match their histograms so they both have the same colors. I tried it using histeq but it restores only a portion of the image. Is there any way to change im2's histogram to be exactly the same as im1? The second approach was just to copy each pixel value from im1 to im2 but this is wrong since it doesn't restore the original image state. Are there any suggestions to restore the image?
#sepdek below pretty much suggested the method that #NKN alluded to, but I will provide another approach. One more alternative I can suggest is to perform a colour correction based on a least mean squared solution. What this alludes to is that we can assume that transforming a pixel from im2 to im1 requires a linear combination of weights. In other words, given a RGB pixel where its red, green and blue components are shaped into a 3 x 1 vector from the corrupted image (im2), there exists some linear transformation to get its equivalent pixel in the clean image (im1). In other words, we have this relationship:
[R_im1] [R_im2]
[G_im1] = A * [G_im2]
[B_im1] [B_im2]
Y = A * X
A in this case would be a 3 x 3 matrix. This is essentially performing a matrix multiplication to get your output corrected pixel. The input RGB pixel from im2 would be X and the output RGB pixel from im1 would be Y. We can extend this to as many pixels as we want, where pairs of pixels from im1 and im2 would establish columns along Y and X. In general, this would further extend X and Y to 3 x N matrices. To find the matrix A, you would find the least mean squared error solution. I won't get into it, but to find the optimal matrix of A, this requires finding the pseudo-inverse. In our case here, A would thus equal to:
Once you find this matrix A, you would need to take each pixel in your image, shape it so that it becomes a 3 x 1 vector, then multiply A with this vector like the approach above. One thing you're probably asking yourself is what kinds of pixels do I need to grab from both images to make the above approach work? One guideline you must adhere to is that you need to make sure that you're sampling from the same spatial location between the two images. As such, if we were to grab a pixel at... say... row 4, column 9, you need to make sure that both pixels from im1 and im2 come from this same row and same column, and they are placed in the same corresponding columns in X and Y.
Another small caveat with this approach is that you need to be sure that you sample a lot of pixels in the image to get a good solution, and you also need to make sure the spread of your sampling is over the entire image. If we localize the sampling to be within a small area, then you're not getting a good enough distribution of the colours and so the output will not look very nice. It's up to you on how many pixels you choose for the problem, but from experience, you get to a point where the output starts to plateau and you don't see any difference. For demonstration purposes, I chose 2000 pixels in random positions throughout the image.
As such, this is what the code would look like. I use randperm to generate a random permutation from 1 to M where M is the total number of pixels in the image. These generate linear indices so that we can sample from the images and construct our matrices. We then apply the above equation to find A, then take each pixel and apply a matrix multiplication with A to get the output. Without further ado:
close all;
clear all;
im1 = imread('http://i.stack.imgur.com/GtgHU.jpg');
im2 = imread('http://i.stack.imgur.com/wHW50.jpg');
rng(123); %// Set seed for reproducibility
num_colours = 2000;
ind = randperm(numel(im1) / size(im1,3), num_colours);
%// Grab colours from original image
red_out = im1(:,:,1);
green_out = im1(:,:,2);
blue_out = im1(:,:,3);
%// Grab colours from corrupted image
red_in = im2(:,:,1);
green_in = im2(:,:,2);
blue_in = im2(:,:,3);
%// Create 3 x N matrices
X = double([red_in(ind); green_in(ind); blue_in(ind)]);
Y = double([red_out(ind); green_out(ind); blue_out(ind)]);
%// Find A
A = Y*(X.')/(X*X.');
%// Cast im2 to double for precision
im2_double = double(im2);
%// Apply matrix multiplication
out = cast(reshape((A*reshape(permute(im2_double, [3 1 2]), 3, [])).', ...
[size(im2_double,1) size(im2_double,2), 3]), class(im2));
Let's go through this code slowly. I am reading your images directly from StackOverflow. After, I use rng to set the seed so that you can reproduce the same results on your end. Setting the seed is useful because it allows you to reproduce the random pixel selection that I did. We generate those linear indices, then create our 3 x N matrices for both im1 and im2. Finding A is exactly how I described, but you're probably not used to the rdivide / / operator. rdivide finds the inverse on the right side of the operator, then multiplies it with whatever is on the left side. This is a more efficient way of doing the calculation, rather than calculating the inverse of the right side separately, then multiplying with the left when you're done. In fact, MATLAB will give you a warning stating to avoid calculating the inverse separately and that you should the divide operators instead. Next, I cast im2 to double to ensure precision as A will most likely be floating point valued, then go through the multiplication of each pixel with A to compute the result. That last line of code looks pretty intimidating, but if you want to figure out how I derived this, I used this to create vintage style photos which also require a matrix multiplication much like this approach and you can read up about it here: How do I create vintage images in MATLAB? . out stores our final image. After running this code and showing what out looks like, this is what we get:
Now, the output looks completely scrambled, but the colour distribution more or less mimics what the input original image looks like. I have a few explanations on why this is the case:
There is quantization noise. If you take a look at the final image, there is various white spotting all over. This is probably due to the quantization error that is introduced when compressing your image. Pixels that should map to the same colours between the images will have slight variations due to quantization which gives us that spotting
There is more than one colour from im2 that maps to im1. If there is more than one colour from im2 that maps to im1, it is impossible for a linear multiplication with the matrix A to be able to generate more than one kind of colour for im1 given a single pixel in im2. Instead, the least mean-squared solution will try and generate a colour that minimizes the error and give you the best colour possible instead. This is probably way the face and other fine details of the image are obscured because of this exact reason.
The image is noisy. Your im2 is not completely clean. I can also see various spots of salt and pepper noise across all of the channels. One bad thing about this method is that if your image is subject to noise, then this method will not faithfully reconstruct the original image properly. Your image can only be corrupted by a wrong mapping of colours. Should there be any other type of image noise introduced, then this method will definitely not work as you are trying to reconstruct the original image based on a noisy image. There are pixels in the noisy image that were never present in the original image, so you'll have no luck getting it back to the way it was before!
If you want to take a look at the histograms of each channel between the original image and the output image, this is what we get:
The code I used to generate the above figure was:
names = {'Red', 'Green', 'Blue'};
figure;
for idx = 1 : 3
subplot(3,2,2*idx - 1);
imhist(im1(:,:,idx));
title([names{idx} ': Image 1']);
end
for idx = 1 : 3
subplot(3,2,2*idx);
imhist(out(:,:,idx));
title([names{idx} ': Output']);
end
The left side shows the red, green and blue histograms for the original image while the right side shows the same histograms for the reconstructed image. You can see that the general shape more or less mimics the original image, but there are some spikes throughout - most likely attributed to quantization noise and the non-unique mapping between colours of both images.
All in all, this is the best that I could do, but I think that was the whole point of the exercise.... to show that it isn't possible.
For more information on how to perform colour correction, check out Richard Alan Peters' II Digital Image Processing slides on colour correction. This was what I started with, and the derivation of how to calculate A can be found in his slides. Perhaps you can use some of what he talks about in your future work.
Good luck!
It seems that you need a scaling function to map the values of im2 to the values of im1.
This is fairly simple and you could write a scaling function to have it available for any such case.
A basic scaling mapping would work as follows:
out_value = min_output + (in_value - min_input) * (outrange / inrange)
given that there is an input value in_value that is within a range of values inrange=max_input-min_input and the mapping results an output value out_value within a range outrange=max_output-min_output. We also need to take into account the minimum input and output range bounds (min_input and min_output) to have a correct mapping.
See for example the following code for a scaling function:
%
% scale the values of a matrix using a set of limits
% possible ways to use:
% y = scale( x, in_range, out_range) --> ex. y = scale( x, [8 230], [0 255])
% y = scale( x, out_range) --> ex. y = scale( x, [0 1])
%
function y = scale( x, varargin );
if nargin<2,
error([upper(mfilename),':: Syntax: y=',mfilename,'(x[,in_range],out_range)']);
end;
if nargin==2,
inrange=[min(x(:)) max(x(:))]; % compute the limits of the input variable
outrange=varargin{1}; % get the output limits from the arguments
else
inrange=varargin{1}; % get the input limits from the arguments
outrange=varargin{2}; % get the output limits from the arguments
end;
if diff(inrange)==0, % row or column vector matrix or scalar
% just do a clipping...
if x>=outrange(2),
y=outrange(2);
elseif x<=outrange(1),
y=outrange(1);
else
y=x;
end;
else
% actually scale the data
% using: out = min_output + (x-min_input) * (outrange / inrange)
y = outrange(1) + (x-inrange(1))*abs(diff(outrange))/abs(diff(inrange));
end;
This function gets a matrix of values and scales them to a desired range.
In your case it could be used as following (variable img is the scaled im2):
for i=1:size(im1,3), % for each of the input/output image channels
output_range = [min(min(im1(:,:,i))) max(max(im1(:,:,i)))];
img(:,:,i) = scale( im2(:,:,i), output_range);
end;
This way im2 is scaled to the range of values of im1 one channel at a time. Output variable img should be the desired one.

Improving Texture Segmentation Results on Matlab

Picture after segmentation with Euclidean distance (just absolute , not absolute squared)
Original texture picture
I'm getting the result above (picture 1) when I perform clustering using Kmeans algorithm and Laws Texture Energy filters (with cluster centroids / groups =6)
What are the possible ways of improving the result ? As can be seen from the result, there is no clear demarcation of the textures.
Could dilation /erosion somehow be implemented for the same ? If yes, please guide.
Analysing the texture using k-means cause you to disregard spatial relations between neighboring pixels: If i and j are next to each other, then it is highly likely that they share the same texutre.
One way of introducing such spatial information is using pair-wise energy that can be optimized using graph cuts or belief-propagation (among other things).
Suppose you have n pixels in the image and L centroids in your k-means, then
D is an L-by-n matrix with D(i,l) is the distance of pixel i to center l.
If you choose to use graph cuts, you can download my wrapper (don't forget to compile it) and then, in Matlab:
>> sz = size( img ); % n should be numel(img)
>> [ii jj] = sparse_adj_matrix( sz, 1, 1 ); % define 4-connect neighbor grid
>> grid = sparse( ii, jj, 1, n, n );
>> gch = GraphCut('open', D, ones( L ) - eye(L), grid );
>> [gch ll] = GraphCut('expand', gch );
>> gch = GraphCut('close', gch );
>> ll = reshape( double(ll)+1, sz );
>> figure; imagesc(ll);colormap (rand(L,3) ); title('resulting clusters'); axis image;
You can find sparse_adj_matrix here.
For a recent implementation of many optimization algorithms, take a look at opengm package.
With respect morphological filtering i suggest this reference: Texture Segmentation Using Area Morphology Local Granulometries. The paper basically describes a morphological area opening filter which removes grayscale components which are smaller than a given area parameter threshold. In binary images the local granulometric size distributions can be generated by placing a window at each image pixel position and, after each opening operation, counting the number of remaining pixels within. This results in a local size distribution, that can be normalised to give the local pdf . Differentiating the pattern spectra gives the density that yields the local pattern spectrum at the pixel, providing a probability density which contains textural information local to each pixel position.
Here is an example to use the granulometries of an image. They are basically non linear scale spaces which work on the area of the grayscale components. The basic intuition is each texture can be characterized based on their spectrum of areas of their grayscale components. A simple binary area opening filter is available in Matlab.