Causes for sudden increase in reads - google-cloud-sql

I've seen a sudden increase in reads on my Google Cloud SQL instance. Is there anything that could have caused this? As far as I'm aware nothing has changed in the database or application.
It's jumped from an average of 5 per second to over 100. The instance is located in the EU region

Related

GCP CloudSQL (PostgreSQL) Crash During Stored Procedure Execution and Failover

I have a stored procedure in GCP CloudSQL (PostgreSQL v9.0.23). It works find in lower environments; but when it runs in Production (with significantly more volume), it crashes the DB itself which results in a Failover.
When we checked the metrics, what we found out is that the memory is more than 90% just before it crashes (15 GB out of the 16GB instance memory). Also the Read / Writes are very high >1000 Ops per second.
The SP does some select and insert statements. Any suggestions to improve this situation helps.
Thanks in advance.
As you have mentioned that the Cloud SQL instance is running smoothly with a small amount of workload but crashing with the Production environment where more intensive workloads are there, it seems the issue is with the instance size. So I would suggest you increase the instance size as per your need.
Also you have mentioned that the memory usage is 15 GB out of 16 GB which amounts to nearly 94%. As per this document your Cloud SQL instance will not be covered under Cloud SQL SLA if memory usage is over 90% for more than 6 hours of duration. So I would suggest you keep the memory usage within 90%. Also I would suggest keeping the CPU utilization as mentioned in this document. To know when your instance reaches any threshold I will suggest you set a monitoring alert for that metrics as mentioned here.
If increasing your instance size doesn’t help I would recommend you to create a support ticket with Google Cloud Support so that they can investigate in detail.

Firestore: getting DEADLINE_EXCEEDED on read operations

Today our application got launched, meaning it started receiving more traffic than usual. But the increase isn't huge. Double of what it was before at most.
But since a few hours, our Sentry logs are full or errors with code DEADLINE_EXCEEDED. When I look at the trace, all of them refer to read operations, most of them on single documents (no queries, just singe doc reads), for example: const res = await fs.collection('coll').doc('doc').get();
When I google for this error message, I get a lot of results about issues with writing, especially in batches, but barely anything is written to our database, it's almost exclusively reads.
To give an indication of the amount of reads our database has to handle, we've had 1.2M reads in the past 30 days, with a peak of 60k per day, a number which we haven't exceeded yet today (41k).
What could be the issue in our application?
As usual, I find the answer right after posting the question to StackOverflow. What we saw here was a symptom of our VM running out of memory! After scaling up the server, the problem disappeared.

"frozen" Google compute engine instance with PostgreSQL

We run several Debian instances with PostgreSQL on Google compute engine and lately we have already seen several occurrences of the following problem.
Instance becomes suddenly non responsive. We cannot ssh it and we cannot connect to the database. Internal monitoring using telegraf is also not running during that period, no monitoring data collected.
Google monitoring of CPU activity shows very low usage during that period. GCP logs do not show any migration in fact do not show anything at all. Also all internal logs for instance - postgresql log, syslog, logs from periodical cronjobs - show the same gap. Looks like the instance was sort of frozen during that time. We so far noticed it only with PostgreSQL instances since these are heavily used.
Instances run these variants of OS and PG:
Debian 9 with PG 11.9
Debian 9 with PG 10.13
These incidents usually take 10-15 minutes, but in one case it was 1:20 hours. At the end of the incident some PG process is killed by an OOM killer but activity on the database immediately before the incident starts is usually relatively low, CPU usage and memory usage too. So it looks more like an instance has limited resources when it starts again? If it is even possible...
Any idea what could be the cause of these issues or what shall we look for? As I mentioned generally no info in internal logs on Debian during the period of the incident.
UPDATE: To avoid misunderstanding - instances in question are data warehouse database running on N1-highmen-8 machine (8 CPUs and 52 GB RAM) with 5 TB SSD. Or database collecting metrics from internet - custom machine 20 CPUs with 90 GB RAM and 3 TB SSD. All SW up to date.
UPDATE 2: Neither syslog, nor kern.log nor messages do not show anything for the time intervals during instance was non responsive. Immediately after incident telegraf recorded huge average load on CPUs but actually quite small CPU usage and Google monitoring shows very small CPU usage during the whole incident. Also immediately after the end of the incident always one of postgresql processes is killed by OOM killer causing database to go to the recovery mode.
As for PG work_mem parameter - instance collecting metrics (20 CPUs 90 GB RAM, 3 TB SSD) uses 8MB - it only inserts data but usually runs like 500 - 1000 connections.
Second instance is data warehouse analytical database and uses work_mem 128MB because lower numbers caused very bad query plans on majority of queries and usually runs only like 10 - 30 connections.
There was no unusual number of connections immediately before incidents happened on both databases.
UPDATE 3: Analytical database had today several small incidents of the same character. During the last one we stopped instance from GCP GUI and started it again after few minutes. Maybe it caused migration to the different HW. Since this operation instance is running OK.
I experienced a similar issue but with a MySQL Instance in GCP, the first issue was related with the type of the VM instance I used, I had a f1-micro machine type on this VM Instance and suddenly I wasn’t able to access the ssh. As this type of VM Instance has only 0.6GB of memory, it became out of memory soon, I changed it to a e2-medium that is value by default and it resolved my problems this time.
As the Instance was out of memory the services in the instance started to fail, it was the reason that I can't access my instance.
At another time I started again with similar issues, but this time, the problem was the disk, I only had 10 GB and there was a process filling my disk, when a partition was out of space, the instance started to fail again.
I only resized my disk, now my instance disk is 20GB and is working fine.
Having said that, I suggest increasing your resources per your convenience to enhance your performance, because to have the problems you described is a good indicator that your existing machine type is not a good fit for your workloads you run on that instance.
If your situation is the same as mine, you could change the machine type to adjust your memory and you can follow the next steps for these tasks please visit the following link to get further information about it.
Changing a machine type
1.- Go to the VM Instances page.
2.- In the Name column, click your instance.
From the instance details page, complete the following steps:
a) Click the Stop button to stop the instance, if you have not stopped it yet.
b) After the instance stops, click the Edit button at the top of the page.
c) Under the Machine configuration section, select the machine type you want to use, or create a custom machine type to increase only the Memory.
d) Save your changes and start again your VM Instance.
You can resize your disk following this guide or with the following command:
gcloud compute disks resize DISK_NAME --size DISK_SIZE
Or with the Console:
Go to the Disks page to see a list of zonal persistent disks in your project.
Click the name of the disk that you want to resize.
On the disk details page, click Edit.
In the Size field, enter the new size for your disk.
Click Save to apply your changes to the disk.
After you resize the disk, you must resize the file system so that the operating system can access the additional space.
Note: Do not resize boot disks beyond 2 TB because this is the limit.
Edit1
You mentioned that the logs don’t show information about the issue when the instance is frozen.
Did you try with the kernel logs? I think it could provide a wealth of diagnostic information about this issue.
For Debian, this logs should be in the following path:
/var/log/kern.log
Also the messages log could help
/var/log/messages
You can obtain more information about the logs in this link.
Also, I think it could be a PostgreSQL config problem, for example you could take a look at "work_mem", this parameter specifies the amount of memory to be used by internal sort operations and hash tables before writing to temporary disk files. The value defaults is four megabytes (4MB).
You can consult this URL to get more information.
Also I have found a good article that explains how to configure the PostgreSQL for Data Warehouse Usage
Another option could be that the kernel process in charge of identifying memory that could be paged out. You could configure your process to check smaller chunks more often.
This link explains better this configuration.
Additionally, as far as I know a data warehouse server consumes a lot of resources, so it could be a good idea to check if your Instance has enough resources for your workload.
Edit2
I have found an article that describes a similar problem and it said that:
When you consume more memory than is available on your machine you can start to see out of out of memory errors within your Postgres logs, or in worse cases the OOM killer can start to randomly kill running processes to free up memory. An out of memory error in Postgres simply errors on the query you’re running, where as the the OOM killer in Linux begins killing running processes which in some cases might even include Postgres itself.
And this is the recommendation they give.
When you see an out of memory error you either want to increase the overall RAM on the machine itself by upgrading to a larger instance OR you want to decrease the amount of memory that work_mem uses. Yes, you read that right: out-of-memory it’s better to decrease work_mem instead of increase since that is the amount of memory that can be consumed by each process and too many operations are leveraging up to that much memory.
You could see the complete explanation of this article “Configuring memory for Postgres” here, it may help you with this issue.

AWS RDS: high write IOPS

We are using RDS instance of type m4.xlarge in ap-south-1 region using Postgres-9.6 Engine.
Yesterday, the write IOPS skyrocketed suddenly. Here are some details around that time. Around 20GB space got filled in 1 and a half hour and then got free automatically. The number of connections also went crazy up to 1500.
Write IOPS Graph,
Free Storage Space Graph,
There is no way our application could have written so much data - 20 GB. Even if it had written, how it got automatically deleted?
Is there any way of knowing what happened here? Has anyone else faced this issue?

MongoDB is giving inconsistent write times

I am using Scala, Reactive Mongo 0.10.5 and Mongo 2.6.4 running on Ubuntu. I have tested on a few machine configurations but right now I am working with 15gb of memory, 2 cores and 60gb of SSD storage (AWS)
I have just set up a test mongo instance and have been using it to benchmark a few things, however I am seeing some inconsistency that I can't explain.
I am writing a consistent amount of data using 10 separate threads to a single collection. Each write consists of a document containing an array which contains 1000 elements. Each element is a complex document consisting of several fields and nested fields. I have tested with arrays of 1000, 10000 and 100 and have seen the same behavior with all. Each write is unique (i.e. I never write to the same document twice)
The write speed tends to be around 100-200ms per write with the current hardware I am using. I would like better but that isn't my main issue.
My main issue is that sometimes the write times will spike. When they do, it can take a single write several seconds to complete. They do eventually complete but it takes a while. I have timeouts built into the app doing the writing (10 seconds) and when the spikes happen it will frequently hit that timeout. I have increased the timeout and verified that the write does eventually complete but it can take a long time (30+ seconds).
I have worked with Mongo before using the Mongo Java Driver in Scala and have not noticed this problem. However it is unclear whether the issue is a result of the driver, or my Mongo setup.
I have looked at the logs and while they report when the query is taking longer, they don't actually provide any information about why it is taking longer. I have done the same with profiling and again they report a long query but don't say why it is long.
I have run mongostat while running and it seems that when the writes start taking a long time I notice a similar slow down in mongostat. I.E. mongostat will pause for several seconds before continuing.
The mongo machine itself is bored while this is happening. Load averages are minimal as are CPU and memory usage. It does not appear to be going into swap.
I suspect I just have something configured incorrectly in the Mongo but I haven't been able to find anything that indicates what.
Has anyone seen this behavior before? Is it something in my configuration or perhaps something with the Reactive Mongo driver?
UPDATE:
Using iostat I was able to determine that the normal writes/second is hitting around 1Mb/second. However during the slow periods it spikes to 6-7Mb/second.
I also found the following in the mongo logs.
[DataFileSync] flushing mmaps took 15621ms for 35 files
[DataFileSync] flushing mmaps took 14816ms for 22 files
In at least one case this log statement corresponds exactly with one of the slow downs.
This definitely seems to be a disk flush problem based on these observations.
Does this imply that I am pushing more data than the current Mongo configuration can handle? Or is there some other configuration that can be done to reduce the impact of those flushes?
It appears that in this case the problem may actually have been related to thread locking within the application itself. Once I resolved the issues with thread locking these other issues seemed to go away.
To be honest I don't know why thread locking would result in the observed behavior in Mongo, but if the problem is gone I am not going to complain.