I am working on a game in sprite kit and have been trying to get a point in front of a node. I've been reading up on trigonometry but have not been able to do it.
The problem: Get a CGPoint x units in front of an SKSpriteNode, relative to zRotation. See the illustration here: http://i.stack.imgur.com/TGZ51.png
I have understood that i can use the adjacent and opposite lengths in the triangle to calculate the distance of the hypotenuse (and that the hypotenuse is a vector?). However, i've failed to understand how to get this vector relative to current zPosition and how to get a point from the vector.
I would be grateful if anyone can provide some sample code or point me in a direction where i can find more info.
Thanks a lot!
I solved it after trying some more and here's how i did it:
- (CGVector)convertAngleToVector:(CGFloat)radians {
CGVector vector;
vector.dx = cos(radians) * 40;
vector.dy = sin(radians) * 40;
return vector;
}
I call the method with the sprites zRotation which gives me a vector. The number 40 decides how long the vector is. Then i just added the vector to the current position.
Related
how do I get mouse world position. X Y plane only in unity . ScreenToWorldPosition isn't working. I think I need to cast a ray to mouse but not sure.
This is what I am using. doesnt seem to give the correct coordinates or right plane. need for targeting and raycasting.
private void Get3dMousePoint()
{
var screenPosition = Input.mousePosition;
screenPosition.z = 1;
worldPosition = mainCamera.ScreenToWorldPoint(screenPosition);
worldPosition.z = 0;
}
Just need XY coords.
I tried with ScreenToWorldPoint () and it works.
The key I think is in understanding the z coordinate of the position.
Geometrically, in 3D space we need 3 coordinates to define a point. With only 2 coordinates we have a straight line with variable z parameter. To obtain a point from that line, we must choose at what distance (i.e. set z) we want the point sought to be.
Obviously, since the camera is perspective, the coordinates you have at z = 1 are different from those at z = 100, differently from the 2D plane.
If you can figure out how far away, that is, to set the z correctly, you can find the point you want.
Just remember that the z must be greater than the minimum rendering distance of the chamber. I set that very value in the script.
Also remember that the resulting vector will have the z equal to the z position of the camera + the z value of the vector used in ScreenToWorldPoint.
void Get3dMousePoint()
{
Vector3 worldPosition = Camera.main.ScreenToWorldPoint(new Vector3(Input.mousePosition.x, Input.mousePosition.y, Camera.main.nearClipPlane));
print(worldPosition);
}
if you think my answer helped you, you can mark it as accepted and vote positively. I would very much appreciate it :)
As per my game requirements, I was giving manual force when two cars collide with each other and move back.
So I want the correct code that can justify this. Here is the example, collision response that I want to get:
As per my understanding, I have written this code:
Vector3 reboundDirection = Vector3.Normalize(transform.position - other.transform.position);
reboundDirection.y = 0f;
int i = 0;
while (i < 3)
{
myRigidbody.AddForce(reboundDirection * 100f, ForceMode.Force);
appliedSpeed = speed * 0.5f;
yield return new WaitForFixedUpdate();
i++;
}
I am moving, my cars using this code:
//Move the player forward
appliedSpeed += Time.deltaTime * 7f;
appliedSpeed = Mathf.Min(appliedSpeed, speed);
myRigidbody.velocity = transform.forward * appliedSpeed;
Still, as per my observation, I was not getting, collision response in the proper direction. What is the correct way for getting above image reference collision response?
Until you clarify why you have use manual forces or how you handle forces generated by Unity Engine i would like to stress one problem in your approach. You calculate direction based on positions but positions are the center of your cars. Therefore, you are not getting a correct direction as you can see from the image below:
You calculate the direction between two pivot or center points therefore, your force is a bit tilted in left image. Instead of this you can use ContactPoint and then calculate the direction.
As more detailed information so that OP can understand what i said! In the above image you can see the region with blue rectangle. You will get all the contact points for the corresponding region using Collision.contacts
then calculate the center point or centroid like this
Vector3 centroid = new Vector3(0, 0, 0);
foreach (ContactPoint contact in col.contacts)
{
centroid += contact.point;
}
centroid = centroid / col.contacts.Length;
This is the center of the rectangle to find the direction you need to find its projection on your car like this:
Vector3 projection = gameObject.transform.position;
projection.x = centroid.x;
gameObject.GetComponent<Rigidbody>().AddForce((projection - centroid )*100, ForceMode.Impulse);
Since i do not know your set up i just got y and z values from car's position but x value from centroid therefore you get a straight blue line not an arrow tilted to left like in first image even in the case two of second image. I hope i am being clear.
Using Sprite Kit I am trying to set an SKPhysicsBody moving according to a given angle, so for example if you wanted the sprite to travel to the right you would specify 1.571 radians. To turn the specified angle into a velocity I am using the method below to convert radians to a CGVector. The ORIGINAL version that I implemented from memory has the strange effect of offsetting all the angles by 90degrees. (i.e. if 0 degrees is used the sprite moves right (just like it would if you specified 90degrees)
Question:
I have fixed this in the NEW version by swapping the dx and dy assignments. My question is why does this happen, do I have it wrong in the original (there do seem to be others doing it that way on the web) or is there some reason based on the particular coordinate system being used.
// ORIGINAL
- (CGVector)convertAngleToVector:(CGFloat)radians {
CGVector vector;
vector.dx = cos(radians) * 10;
vector.dy = sin(radians) * 10;
NSLog(#"DX: %0.2f DY: %0.2f", vector.dx, vector.dy);
return vector;
}
// NEW, SWAPPED DX & DY
- (CGVector)convertAngleToVector:(CGFloat)radians {
CGVector vector;
vector.dy = cos(radians) * 10;
vector.dx = sin(radians) * 10;
NSLog(#"DX: %0.2f DY: %0.2f", vector.dx, vector.dy);
return vector;
}
NOTE: also in Sprite Kit clockwise rotations are negative, so far convertAngleToVector is doing positive clockwise rotations (i.e. 1.571 radians is right, where it should be left) I could just do cos(radians*-1) and sin(radians*-1) but there might be some underlying reason for this based on me swapping dx and dy.
Sprite Kit (SKView Coordinates):
Yeah, SpriteKit defaults to the right. The Physics Collision sample project solves this by implementing this method:
- (CGFloat)shipOrientation
{
// The ship art is oriented so that it faces the top of the scene, but Sprite Kit's rotation default is to the right.
// This method calculates the ship orientation for use in other calculations.
return self.zRotation + M_PI_2;
}
You can then just get the existing orientation by calling something like:
CGFloat shipDirection = [self shipOrientation];
And then adjust the zRotation property from there.
From the Sprite Kit Programming Guide (emphasis added):
Sprite Kit also has a standard rotation convention. Figure 4-2 shows the polar coordinate convention. An angle of 0 radians specifies the positive x axis. A positive angle is in the counterclockwise direction.
In this coordinate system, an angle of zero radians pointing to the right is correct. If you want to use a system in which a zero angle is straight up (along positive y axis) and increase clockwise, you'll want to transform your angles before converting them to vectors.
I have a point A, I also have the angle.
I also have the distance from point A to point B.
What I want to do is create point B a certain angle away from point A.
Im a bit of a maths idiot so any help would be great.
Your point will be this one:
NSPoint PointB = NSMakePoint(PointA.x + distance * sin(angle),
PointA.y + distance * cos(angle));
Bx=Ax+distance*cos(angle)
By=Ay+distance*sin(angle)
I would like to use Cocos2d on the iPhone to draw a 2D car and make it steer from left to right in a natural way.
Here is what I tried:
Calculate the angle of the wheels and just move it to the destination point where the wheels point to. But this creates a very unnatural feel. The car drifts half the time
After that I started some research on how to get a turning circle from a car, which meant that I needed a couple of constants like wheelbase and the width of the car.
After a lot of research, I created the following code:
float steerAngle = 30; // in degrees
float speed = 20;
float carWidth = 1.8f; // as in 1.8 meters
float wheelBase = 3.5f; // as in 3.5 meters
float x = (wheelBase / abs(tan(steerAngle)) + carWidth/ 2);
float wheelBaseHalf = wheelBase / 2;
float r = (float) sqrt(x * x + wheelBaseHalf * wheelBaseHalf);
float theta = speed * 1 / r;
if (steerAngle < 0.0f)
theta = theta * -1;
drawCircle(CGPointMake(carPosition.x - r, carPosition.y),
r, CC_DEGREES_TO_RADIANS(180), 50, NO);
The first couple of lines are my constants. carPosition is of the type CGPoint. After that I try to draw a circle which shows the turning circle of my car, but the circle it draws is far too small. I can just make my constants bigger, to make the circle bigger, but then I would still need to know how to move my sprite on this circle.
I tried following a .NET tutorial I found on the subject, but I can't really completely convert it because it uses Matrixes, which aren't supported by Cocoa.
Can someone give me a couple of pointers on how to start this? I have been looking for example code, but I can't find any.
EDIT After the comments given below
I corrected my constants, my wheelBase is now 50 (the sprite is 50px high), my carWidth is 30 (the sprite is 30px in width).
But now I have the problem, that when my car does it's first 'tick', the rotation is correct (and also the placement), but after that the calculations seem wrong.
The middle of the turning circle is moved instead of kept at it's original position. What I need (I think) is that at each angle of the car I need to recalculate the original centre of the turning circle. I would think this is easy, because I have the radius and the turning angle, but I can't seem to figure out how to keep the car moving in a nice circle.
Any more pointers?
You have the right idea. The constants are the problem in this case. You need to specify wheelBase and carWidth in units that match your view size. For example, if the image of your car on the screen has a wheel base of 30 pixels, you would use 30 for the WheelBase variable.
This explains why your on-screen circles are too small. Cocoa is trying to draw circles for a tiny little car which is only 1.8 pixels wide!
Now, for the matter of moving your car along the circle:
The theta variable you calculate in the code above is a rotational speed, which is what you would use to move the car around the center point of that circle:
Let's assume that your speed variable is in pixels per second, to make the calculations easier. With that assumption in place, you would simply execute the following code once every second:
// calculate the new position of the car
newCarPosition.x = (carPosition.x - r) + r*cos(theta);
newCarPosition.y = carPosition.y + r*sin(theta);
// rotate the car appropriately (pseudo-code)
[car rotateByAngle:theta];
Note: I'm not sure what the correct method is to rotate your car's image, so I just used rotateByAngle: to get the point across. I hope it helps!
update (after comments):
I hadn't thought about the center of the turning circle moving with the car. The original code doesn't take into account the angle that the car is already rotated to. I would change it as follows:
...
if (steerAngle < 0.0f)
theta = theta * -1;
// calculate the center of the turning circle,
// taking int account the rotation of the car
circleCenter.x = carPosition.x - r*cos(carAngle);
circleCenter.y = carPosition.y + r*sin(carAngle);
// draw the turning circle
drawCircle(circleCenter, r, CC_DEGREES_TO_RADIANS(180), 50, NO);
// calculate the new position of the car
newCarPosition.x = circleCenter.x + r*cos(theta);
newCarPosition.y = circleCenter.y + r*sin(theta);
// rotate the car appropriately (pseudo-code)
[car rotateByAngle:theta];
carAngle = carAngle + theta;
This should keep the center of the turning circle at the appropriate point, even if the car has been rotated.