I would like to be able to inject some dependencies (by using an IoC container) into entities just after they are loaded and materialized by Entity Framework (as a result of a query for instance).
It is possible to do so by hooking on the ObjectMaterialized event but I'm wondering if there is no better manner to achieve this as I use EF 6 and code first.
Any advices or ideas ?
Thanks
Riana
Although Entity Framework can be configured to allow dependencies to be injected into entities, I think it's safe to say that the general consensus (take a look at the opinions of Jimmy Bogard, Mark Seemann and me) is to not do this at all.
For me the main point is that classes like entities, DTOs and messages are very different from service classes. Entities, DTOs and messages are short lived objects containing runtime data, while services contain behavior, are often long lives and simply process runtime data (such as entities).
That doesn't mean that you can't use services into your entities though. As Mark describes here, not letting your entities use services lead to an Anemic Domain Model. But what this means is that entities shouldn't be part of your object graph.
Instead, if you are practicing DDD, your entities can simply accept dependencies into the domain methods that you define on the entities. Those dependencies can than be supplied by the command handlers that execute the use case. In other words, dependencies are injected into the constructor of a command handler, and when calling an entity's domain method, the command handler will supply the dependencies that this method requires (usually just one or two) to that method (method injection).
Related
There are classes that are entities according to DDD, and there are classes that have #javax.persistence.Entity annotation. Should they be the same classes? Or should JPA entities act just as a mechanism for a mapper (https://martinfowler.com/eaaCatalog/dataMapper.html) to load DDD entities from a database (and store them) and be kept outside the domain model?
Would it make a difference if database metadata were separated and stored externally (for example, in XML)? If such classes are entities, where is the boundary? I think classes generated from XSD (for example, with JAXB) or even from database with MyBatis Generator are not entities as understood in DDD.
That's an implementation detail really. They could be or they could not depending on the flexibility of your ORM. For instance, if your ORM allows to map your domain objects without polluting them with persistence concerns then that's the approach that requires the less overhead and which I'd go for.
On the other hand, if your ORM is not flexible enough then you could go for a pragmatic hybrid approach where your AR and it's state are two different classes and where the state class is simple enough to easily be mapped. Note that the AR would still be responsible to protect it's state here and the state object wouldn't be accessed directly from outside the AR. The approach is described by Vaughn Vernon here.
Your JPA entities should be the domain entities. Why?
Your domain entities should express some strong constraints, e.g. by
Having parameterized constructors
Not exposing all setters
Do validation on write operations
If possible, a domain entity should always remain a valid business entity.
By introducing some kind of mapper, you introduce a possibility to automagically write arbitrary stuff into your domain entities, which basically renders your constraints useless.
The other option would be enforcing the same constraints on JPA and domain entities which introduces redundancy.
Your best bet is keeping your JPA entities as ORM-agnostic as possible. Using Hibernate, this can be done using a configurating class or XML file. But I am no Java EE/JPA guy, so it's hard for me to give a good implementation advice.
After some more experience with JPA and microservices, I would say that I would most likely not separate them when using JPA, unless there's a reason that makes me do otherwise. On the other hand, entities in a single bounded context do not necessarily have to be only JPA entities. It's possible to have both entities mapped by JPA implementation and entities mapped from DTOs using other technologies (like JSON mappers) or manually.
I agree that both ways are possible. After programming some applications with DDD in mind, I find that this heuristic works well:
If you start from having an entity and not having JPA, it will probably be too hard to refactor an entity so that it can be used by ORM framework, so keep them separate
If you start from scratch, it is worth not distinguishing DDD entities from JPA entities
I'm aware that copying entity classes and properties into DTOs is considered anti-pattern, so by Exposed domain model pattern the same #Entity can be used as both database entity class, and DTO for service and MVC layer. (see here https://codereview.stackexchange.com/questions/93511/data-transfer-objects-vs-entities-in-java-rest-server-application)
But suppose we have microservice architecture where the same set of properties is used as entity in one project with persistence, and as DTO in another project which uses the first one as a service. What's the proposed pattern in such a situation?
Because the second project doesn't need #Entity related functionality, and if we put that class in shared library, it will be tied unnecessary to JPA specific APIs and libraries. And the alternative is to again use separate DTO classes anti-pattern.
When your requirements for a DTO model exactly match your entity model you are either in a very early stage of the project or very lucky that you just have a simple model. If your model is very simple, then DTOs won't give you many immediate benefits.
At some point, the requirements for the DTO model and the entity model will diverge though. Imagine you add some audit aspects, statistics or denormalization to your entity/persistence model. That kind of data is usually never exposed via DTOs directly, so you will need to split the models. It is also often the case that the main driver for DTOs is the fact that you don't need all the data all the time. If you display objects in e.g. a dropdown you only need a label and the object id, so why would you load the whole entity state for such a use case?
The fact that you have annotations on your DTO models shouldn't bother you that much, what is the alternative? An XML-like mapping? Manual object wiring?
If your model is used by third parties directly, you could use a subclassing i.e. keep the main model free of annotations and have annotated subclasses in your project that extend the main model.
Since implementing a DTO approach correctly, I created Blaze-Persistence Entity Views which will not only simplify the way you define DTOs, but it will also improve the performance of your queries.
If you are interested, I even have an example for an external model that uses entity view subclasses to keep the main model clean.
Thank you for the answers, but emphasize in the question is on microservice (MS) architecture and reusing defined entity POJOs from one MS in another as POJOs. From what I've read on microservices it's closely related to another question - should MSs share any common functionality and classes at all, or be completely independent? It seems there is no definite agreement on it, and also no definite answer, or widely accepted pattern, to this.
From my recent experience here is what I adopted, and it works well so far.
Have common functionality across MSs - yes, in form of a commons project added as dependency to all MSs, with its dependencies set as optional. Share entity classes (expose them in commons) - no.
The main reason is that entity classes are closely related to data store for particular MS. And as the established rule is that MSs shouldn't share data stores, then it makes sense not to share entity classes for those data stores. It helps MSs to be more independent, and freedom to manage their data store in their own way. It means some more typing to add additional DTO classes and conversion between them, but it's a trade-off worth taking to retain MS independence. Reasons Christian Beikov and Maksim Gumerov mentioned apply as well.
What we do share (put in commons) are some common functionality and helper classes (for cloud, discovery, error handling, rest and json configuration...), and pure DTOs, where T is transfer between MSs (rest entities or message payloads).
Here is my situation. I use Entity Framework 4 with the Web API
The structure of my code is quite simple, I have the Service layer where all my rest API is organized, I have my Business logic layer where I have business controllers to manage Transactions between the rest calls and the data layer. Finally, I have a data layer with generic repositories and a DAO to access the whole thing.
In my Business controllers, I use using to inject a non transactionnal (read only methods) OR a transactional (CRUD methods) DbContext.
When returning values to my REST API, I parse it into JSON.
The problem is that I keep having this exception: Newtonsoft.Json.JsonSerializationException
I return my entities / collections / lists outside of my using{} statement, which I think EF does not like by default.
In debug mode, sometimes, I will manage to retrieve all data, but not all the time. Since my entities come from a query within a DbContext, I think that the behavior is to remove loaded sub-properties after the context has been disposed of.
Fact is, I want to keep my structure as is, and I was wondering the following:
Is there a way of returning complete (not lazy-loaded) entities after leaving the using{} statement?
Thanks a lot
I actually read more about Entity Frameworks behavior. What I get is actually standard for EF. I have to force the context to Load() my refered entities in order to get them after leaving the context.
I recently, out of ignorance and lack of time, merged the domain models (POCO entity classes) from several projects into one 'DataModel' project, because I didn't want to duplicate dedicated DbContexts over all the projects. It struck me as ideal that something generic might be done, like a DbContext extension, to which one can add DbSet instances from various client projects.
I have read mention of such things, normally in the same circles as authors that contend - and I agree wholeheartedly - that the repository functionality is fulfilled completey by the DbSet class.
Can anyone offer any advice for building a generic DbContext which can exist in one project, where other projects can all have their domain models (sets of domain entities) registered with the shared DbContext, where they are all allocated they own DbSet to act as their repository?
building a generic DbContext which can exist in one project, where other projects can all have their domain models (sets of domain entities) registered
Interesting idea, but I'm not sure what you would gain by that.
For one, you'd never be able to simply type db.Customer (or similar). It should always be genericdb.Set<Customer>(), not knowing whether genericdb knows about Customer at all. (It may not have been registered).
Then, how should this registering take place? There are two ways to let a context map a class to a database model:
Creating a DbSet property in a DbContext-derived class and rely on code-first default conventions concerning table and column names, pluralization, etc.
Providing mapping configuration.
The first option defeats the purpose of a generic context class, so you'd have to register the domain classes by supplying EntityTypeConfiguration<T>s for each class in the domain, also for classes that normally could do without. (This should be done in the context's constructor, by the way.)
A further implication would be that somewhere you'd need a component/service that knows which groups of classes belong together and is able to deliver a coherent list of configurations. So, in stead of having dedicated contexts as an organizing principle out of the box you'd have to create your own organizer.
But back to the start. Couldn't you create a DAL that contains a DbContext factory that supplies the contexts as they previously existed for your projects? You don't have to duplicate dedicated DbContext classes this way.
I'm starting a new project and have decided to try to incorporate DDD patterns and also include Linq to Entities. When I look at the EF's ObjectContext it seems to be performing the functions of both Repository and Unit of Work patterns:
Repository in the sense that the underlying data level interface is abstracted from the entity representation and I can request and save data through the ObjectContext.
Unit Of Work in the sense that I can write all my inserts/updates to the objectContext and execute them all in one shot when I do a SaveChanges().
It seems redundant to put another layer of these patterns on top of the EF ObjectContext? It also seems that the Model classes can be incorporated directly on top of the EF generated entities using 'partial class'.
I'm new at DDD so please let me know if I'm missing something here.
I don't think that the Entity Framework is a good implementation of Repository, because:
The object context is insufficiently abstract to do good unit testing of things which reference it, since it is bound to the DB access. Having an IRepository reference instead works much better for creating unit tests.
When a client has access to the ObjectContext, the client can do pretty much anything it cares to. The only real control you have over this at all is to make certain types or properties private. It is hard to implement good data security this way.
On a non-trivial model, the ObjectContext is insufficiently abstract. You may, for example, have both tables and stored procedures mapped to the same entity type. You don't really want the client to have to distinguish between the two mappings.
On a related note, it is difficult to write comprehensive and well-enforce business rules and entity code. Indeed, whether or not it this is even a good idea is debatable.
On the other hand, once you have an ObjectContext, implementing the Repository pattern is trivial. Indeed, for cases that are not particularly complex, the Repository is something of a wrapper around the ObjectContext and the Entity types.
I would say that you should look at the ObjectContext as your UnitOfWork, and not as a repository.
An ObjectContext cannot be a repository -imho- since it is 'to generic'.
You should create your own Repositories, which have specialized methods (like GetCustomersWithGoldStatus for instance) next to the regular CRUD methods.
So, what I would do, is create repositories (one for each aggregate-root), and let those repositories use the ObjectContext.
I like to have a repository layer for the following reasons:
EF gotcha's
When you look at some of the current tutorials on EF (Code First version), it is apparent there's a number of gotcha's to be handled, particularly around object graphs (entities containing entities) and disconnected scenarios. I think a repository layer is great for wrapping these up in one place.
A clear picture of data access mechanisms
A repository gives a specific picture as to how the BL is accessing and updating the data store. It exposes methods that have a clear single purpose, and can be tested independently of the BL. Standard example from the textbooks, Find() to find a single entity. A more application specific example, Clear() to clear down a db table.
A place for optimizations
Inevitably you come up against performance hits when using vanilla EF. I use the repository to hide the optimization mechanisms from the BL.
Examples,
GetKeys() to project cached keys from the tables (for Insert/Update decisions). The reading of key only is faster and uses less memory than reading the full entity.
Bulk load via SqlBulkCopy. EF will insert by individual SQL statements. If you want a single statement to insert multiple rows, SqlBulkCopy is a good mechanism. The repository encapsulates this and provides metadata for SqlBulkCopy. As well as the Insert method, you need a StartBatch() and EndBatch() method, which is also an argument for a UnitOfWork layer.