Generic Operator Overloading in Swift - swift

I've been learning Swift and have a question about using Generics with Operator Overloading. This is my requirement:
Have a basic generic struct that implements generic matrix functionality, having three main parameters: row:Int, column:Int and array:[T].
Want to implement == operator, i.e. each parameter is ==.
Don't want to have to duplicate operator overload functions for each type.
It seems Swift isn't smart enough to allow me to write a generic operator overload function that references the generic array [T] without some workarounds?
I have read this post: [http://www.raywenderlich.com/80818/operator-overloading-in-swift-tutorial][1] and the solution given there seems surprisingly complicated.
I just wondered what the general consensus amongst the pro's here is?
Sorry, I will post a code sample as an edit shortly.
Paul

Here's how you can do that. Its very easy, you just need to ensure that T is Equatable.
struct Matrix<T> {
// Definition goes here.
var array = [T]()
}
func ==<T: Equatable>(lhs: Matrix<T>, rhs: Matrix<T>) -> Bool {
return lhs.array == rhs.array
}

Related

Nesting structs in Protocol Extension: Type '...' cannot be nested in generic function '...()'

I have a protocol, let's say Fruit (see below).
Within one of the methods I want to use a custom struct.
This results in the following error:
Type 'Packet' cannot be nested in generic function 'saveObject()'
Why is this not allowed?
protocol Fruit: Codable
{
var vitamines: Int { get }
var description: String { get }
}
extension Fruit
{
func saveObject()
{
struct Packet
{
let val1, val2, val3: Int
}
let packet = Packet(val1: vitamines, val2: 0, val3: 0)
}
}
Looking for a solution or viable alternatives.
I've tried using a tuple but I need to save the Packet to Data, which is not easily possible using a tuple (as far as I know).
You cannot nest new types inside of generic structures in extensions this way. Allowing that would likely become very complex, since it is not quite clear whether this type would be Fruit.saveObject.Packet or <ConformingType>.saveObject.Packet. For example, consider the following (legal) code for how these kinds of types can escape, and the system has to deal with them, including knowing how to dispatch methods to them, how much storage they require, etc.
protocol P {}
func x() -> P {
struct T: P {}
return T()
}
type(of: x())
If you change this to make x() generic, then it is no longer legal:
func x<Y>() -> P {
struct T: P {} // error: type 'T' cannot be nested in generic function 'x()'
return T()
}
That said, if you believe that the language should be changed to allow this, then Swift Evolution is the process to suggest it. You should first think though how you would like this to work if Fruit had associatedtypes, if saveObject() were itself generic, and if Packet included reference to type variable defined in either of those places. (I'm not saying these are insurmountable problems at all. This may be an excellent feature and it may be possible to design it very well. You just need to think through how it interacts with other features of the language.)
The solution is to move Packet to the top level, outside the extension and outside the protocol.

Why don't protocols in Swift use brackets instead of associated types? [duplicate]

I'm confused about the difference between the syntax used for associated types for protocols, on the one hand, and generic types on the other.
In Swift, for example, one can define a generic type using something like
struct Stack<T> {
var items = [T]()
mutating func push(item: T) {
items.append(item)
}
mutating func pop() -> T {
return items.removeLast()
}
}
while one defines a protocol with associated types using something like
protocol Container {
associatedtype T
mutating func append(item: T)
var count: Int { get }
subscript(i: Int) -> T { get }
}
Why isn't the latter just:
protocol Container<T> {
mutating func append(item: T)
var count: Int { get }
subscript(i: Int) -> T { get }
}
Is there some deep (or perhaps just obvious and lost on me) reason that the language hasn't adopted the latter syntax?
RobNapier's answer is (as usual) quite good, but just for an alternate perspective that might prove further enlightening...
On Associated Types
A protocol is an abstract set of requirements — a checklist that a concrete type must fulfill in order to say it conforms to the protocol. Traditionally one thinks of that checklist of being behaviors: methods or properties implemented by the concrete type. Associated types are a way of naming the things that are involved in such a checklist, and thereby expanding the definition while keeping it open-ended as to how a conforming type implements conformance.
When you see:
protocol SimpleSetType {
associatedtype Element
func insert(_ element: Element)
func contains(_ element: Element) -> Bool
// ...
}
What that means is that, for a type to claim conformance to SimpleSetType, not only must that type contain insert(_:) and contains(_:) functions, those two functions must take the same type of parameter as each other. But it doesn't matter what the type of that parameter is.
You can implement this protocol with a generic or non-generic type:
class BagOfBytes: SimpleSetType {
func insert(_ byte: UInt8) { /*...*/ }
func contains(_ byte: UInt8) -> Bool { /*...*/ }
}
struct SetOfEquatables<T: Equatable>: SimpleSetType {
func insert(_ item: T) { /*...*/ }
func contains(_ item: T) -> Bool { /*...*/ }
}
Notice that nowhere does BagOfBytes or SetOfEquatables define the connection between SimpleSetType.Element and the type used as the parameter for their two methods — the compiler automagically works out that those types are associated with the right methods, so they meet the protocol's requirement for an associated type.
On Generic Type Parameters
Where associated types expand your vocabulary for creating abstract checklists, generic type parameters restrict the implementation of a concrete type. When you have a generic class like this:
class ViewController<V: View> {
var view: V
}
It doesn't say that there are lots of different ways to make a ViewController (as long as you have a view), it says a ViewController is a real, concrete thing, and it has a view. And furthermore, we don't know exactly what kind of view any given ViewController instance has, but we do know that it must be a View (either a subclass of the View class, or a type implementing the View protocol... we don't say).
Or to put it another way, writing a generic type or function is sort of a shortcut for writing actual code. Take this example:
func allEqual<T: Equatable>(a: T, b: T, c: T) {
return a == b && b == c
}
This has the same effect as if you went through all the Equatable types and wrote:
func allEqual(a: Int, b: Int, c: Int) { return a == b && b == c }
func allEqual(a: String, b: String, c: String) { return a == b && b == c }
func allEqual(a: Samophlange, b: Samophlange, c: Samophlange) { return a == b && b == c }
As you can see, we're creating code here, implementing new behavior — much unlike with protocol associated types where we're only describing the requirements for something else to fulfill.
TLDR
Associated types and generic type parameters are very different kinds of tools: associated types are a language of description, and generics are a language of implementation. They have very different purposes, even though their uses sometimes look similar (especially when it comes to subtle-at-first-glance differences like that between an abstract blueprint for collections of any element type, and an actual collection type that can still have any generic element). Because they're very different beasts, they have different syntax.
Further reading
The Swift team has a nice writeup on generics, protocols, and related features here.
This has been covered a few times on the devlist. The basic answer is that associated types are more flexible than type parameters. While you have a specific case here of one type parameter, it is quite possible to have several. For instance, Collections have an Element type, but also an Index type and a Generator type. If you specialized them entirely with type parameterization, you'd have to talk about things like Array<String, Int, Generator<String>> or the like. (This would allow me to create arrays that were subscripted by something other than Int, which could be considered a feature, but also adds a lot of complexity.)
It's possible to skip all that (Java does), but then you have fewer ways that you can constrain your types. Java in fact is pretty limited in how it can constrain types. You can't have an arbitrary indexing type on your collections in Java. Scala extends the Java type system with associated types just like Swift. Associated types have been incredibly powerful in Scala. They are also a regular source of confusion and hair-tearing.
Whether this extra power is worth it is a completely different question, and only time will tell. But associated types definitely are more powerful than simple type parameterization.
To add to the already great answers, there's another big difference between generics and associated types: the direction of the type generic fulfilment.
In case of generic types, it's the client that dictates which type should be used for the generic, while in case of protocols with associated types that's totally in the control of the type itself. Which means that types that conform to associated types are in liberty to choose the associated type that suits them best, instead of being forced to work with some types they don't know about.
As others have said, the Collection protocol is a good example of why associated types are more fit in some cases. The protocol looks like this (note that I omitted some of the other associated types):
protocol Collection {
associatedtype Element
associatedtype Index
...
}
If the protocol would've been defined as Collection<Element, Index>, then this would've put a great burden on the type conforming to Collection, as it would've have to support any kind of indexing, many of them which don't even make sense (e.g. indexing by a UIApplication value).
So, choosing the associated types road for protocol generics it's also a matter of empowering the type that conforms to that protocol, since it's that type the one that dictates what happens with the generics. And yes, that might sound less flexible, but if you think about it all types that conform to Collection are generic types, however they only allow generics for the types that make sense (i.e. Element), while "hardcoding" the other associated types (e.g. Index) to types that make sense and are usable in their context.

At runtime, how does Swift know which implementation to use?

protocol A {
func f()
}
struct S1 : A {
func f() {
print("S1")
}
}
struct S2 : A {
func f() {
print("S2")
}
}
let array: [A] = [S1(), S2()]
for s: A in array {
s.f()
}
// "S1\n" "S2\n"
If this was an inheritance hierarchy, I would expect Swift to use a v-table to look up the correct implementation. However, the concrete types in array could be anything that implements A, along with any number of other protocols, so how would the Swift runtime know the structure of the object if it was also using v-tables?
The Swift runtime uses a Protocol Witness Table which holds pointers to each type's implementations of the protocol methods.
Mike Ash explains it best in his article Exploring Swift Memory Layout, Part II:
The last one, at offset 32 is a "protocol witness table" for the underlying type and the protocol, which contains pointers to the type's implementations of the protocol methods. This is how the compiler is able to invoke methods, such as p(), on a value of protocol type without knowing the underlying type at runtime.
I would also watch the WWDC video Understanding Swift Performance as suggested in the comments by Hamish.

Swift generic constraints based on operator

Suppose I want to add up all the values of an entry of an array. Not only integers, but also double values or some type I created myself which implements the + operator. So my question is: Is it possible to create such a function with a constraint that is based on the fact if the type implements the operator? Such as or something like that (obviously THIS isn't working).
Thanks in advance
There are several ways you can approach the problem.
IntegerArithmeticType
While I know of no explicit way to say "Hey Swift, I want to only allow type T where T has this operator", all types we commonly think of as capable of being added, subtracted, multiplied, and divided automatically conform to IntegerArithmeticType, which can be used as a generic constraint for any generic function or type.
For example:
func addAll<T: IntegerArithmeticType>(array: [T]) -> T {
var count = array[0]
for (index, value) in array.enumerate() {
if index != 0 {
count += value
}
}
return count
}
Notice in this quick mock-up version I initialized count with the first value of the array and then avoiding double-counting by checking the index against 0 inside the for loop. I can't initialize count with 0 because 0 is an Int while I want count to be of type T.
You mentioned having your own types work with this too. One option is to have your custom type conform to IntegerArithmeticType, although it requires a lot more than just the + operator. For details on IntegerArithmeticType, see SwiftDoc.
Custom Protocol
If conforming to IntegerArithmeticType imposes some sort of limitation on you, you can create a custom protocol with the + function and whatever other requirements you would like. After all, operators are really just functions. Note that you can add conformance to already existing types with extensions. For example:
protocol Addable {
func +(left: Self, right: Self) -> Self
// Other requirements...
}
extension Int: Addable {}
extension Double: Addable {}

Swift Generics: Constraining Argument Types

Coming from a C++ background (templates), I'm struggling to understand why the following piece of Swift code (generics) does not compile:
func backwards<T>(array: [T]) -> [T] {
let reversedCollection = array.sort(>)
return reversedCollection
}
The way I understand it is that T is a generic type on which I do not put any constraint (<T>) and declare array to be of type Array<T>. Yet this produces the following error:
Ambiguous reference to member 'sort()'
I understand that constraints can be put on the generic type using protocols. However, in this case, I don't want any constraint on T. Rather, I want to constrain the type of the first parameter.
I've been reading Apple's documentation on Generic Types for a few hours now but I'm still not much wiser. I have the impression that this is not possible and constraints are put solely on the declared types, but that's as far as I got.
So the question is: If possible, how do I put constraints on the types of the function arguments? If not, how do I achieve the same result?
sort(>) is legal only when Element is Comparable. Since the element type of [T] is T, T must conform to Comparable in order for the array [T] to be sortable via >:
func backwards<T: Comparable>(array: [T]) -> [T] {
let reversedCollection = array.sort(>)
return reversedCollection
}