Swift extension declaration error: "declaration only valid at file scope" - swift-extensions

I'm trying to create a simple Swift extension containing a calculated property. I don't understand why I'm getting this compile error (“declaration only valid at file scope”). The error is at the beginning of the "private extension OpStack" line. (This code is contained in a class.)
If I remove all of the code inside the extension, I still get the same error.
Here's the code:
private typealias OpStack = Array<Op>
private extension OpStack {
//^ error:"This declaration is only valid at file scope"
var topIsOperation: Bool {
if self.isEmpty { return false }
switch self[self.count-1] {
case .Operand:
return false
default:
return true
}
}
}

The problem is extension Array<> { } works, extending Arrays, but extension Array<SomeType> { } does not work because its trying to extend some particular arrays with elements of type SomeType instead of all arrays.
I solved the problem by using a struct instead of trying to extend Array:
struct OpStack {
var ops = [Op]()
var topIsOperation: Bool {
if self.ops.isEmpty { return false }
switch self.ops[self.ops.count-1] {
case .Operand:
return false
default:
return true
}
}
}
Alternatively, I could have created a function:
func topIsOperation(a: [op]) -> bool { }

Related

Extends Set's insert in swift for custom logic

I need to have custom logic in a Set that defines when a Hashable can be insert or not.
First I tried to solve this with a observer
var Tenants: Set<Tenant> = [] {
willSet {
// to the business logic here
// ...
But in an observer i can not return an error. So I tried to extend Set to overwrite the insert method.
extension Set where Element == Tenant {
#inlinable mutating func insert(_ newMember: Element) -> (inserted: Bool, memberAfterInsert: Element){
// .... do my logic here ...
return (true, newMember)
}
}
That works so far and the method will be called. I can return true and if my logic did not pass even a false. Ok, but how do I add the Element into the Set? super.insert(). The return is correct, but the Set is empty. How to add the elements into the concrete set?
Implementation so far
/// Global set of known tenants
var Tenants: Set<Tenant> = [] {
willSet {
let newTenants = newValue.symmetricDifference(Tenants)
guard let newTenant = newTenants.first else {
Logging.main.error("Can not find tenant to add.")
return
}
Logging.main.info("Will add new Tenant \(newTenant.name) [\(newTenant.ident)]")
}
}
extension Set where Element == Tenant {
#inlinable mutating func insert(_ newMember: Element) -> (inserted: Bool, memberAfterInsert: Element){
print("Check to add...")
// .... do my logic here ...
// ok
return (true, newMember)
}
}
The result is:
Check to add...
error : Can not find tenant to add.
Check to add...
error : Can not find tenant to add.
This seems to work for "do my logic here"
self = self.union([newMember])
Edit: Because this breaks the semantics of Set, I think it is better to write it as something like this:
struct CheckedSet<T: Hashable> {
private(set) var wrappedSet: Set<T> = []
var shouldInsert: (T) -> Bool = { _ in true }
mutating func maybeInsert(_ t: T) {
guard shouldInsert(t) else { return }
wrappedSet.insert(t)
}
}
var cs = CheckedSet<String>()
cs.shouldInsert = { str in str.allSatisfy(\.isLowercase) }
cs.maybeInsert("HELLO")
cs.wrappedSet // []
cs.maybeInsert("hello")
cs.wrappedSet // ["hello"]
I would do it with a property wrapper:
#propertyWrapper
struct TenantsSet {
var wrappedSet: Set<Tenant>
struct Projected {
let error: Bool
}
var projectedValue = Projected(error: false)
var wrappedValue: Set<Tenant> {
get { wrappedSet }
set {
print("some custom logic")
// set projectedValue appropriately
wrappedSet = newValue
}
}
init(wrappedValue: Set<Tenant>) {
wrappedSet = wrappedValue
}
}
This allows error-reporting by checking the error property on the projected value:
#TenantsSet var tenants = []
func f() {
tenants = [Tenant()]
if $tenants.error {
}
}
As the Swift Guide says:
Extensions add new functionality to an existing class, structure, enumeration, or protocol type.
You are not supposed to use them to modify existing behaviour. It would be very confusing to readers of your code. If you want to use an extension to do this, you should declare a new method, with a different signature. Perhaps call it insert(newTenant:)?

Executiong closure on array modification

I have the following code:
class Note: NSObject {
}
struct Global {
static var notes: Array<Note> = [] {
didSet {
print("hi")
}
}
}
This prints "hi" if I add or remove an item from the array or if I do
Global.notes = []
Is there a way to print("hi") every time when one of the Note objects in the array is modified?
Thanks for your answers
Without changing the class to a struct, I have two basic ways to handle this.
This is the object you asked about
class Note: NSObject {
}
struct Global {
static var notes: Array<Note> = [] {
didSet {
print("hi")
}
}
}
Wrap Notes in a wrapper that is a struct to get the struct behavior.
extension Note {
struct Wrapper { let note: Note }
}
extension Global {
static var wrappedNotes = [Note.Wrapper]() {
didSet {
print("hi")
}
}
}
Global.wrappedNotes.append(Note.Wrapper(note: Note()))
Global.wrappedNotes[0] = Note.Wrapper(note: Note())
Global.wrappedNotes.remove(at: 0)
The other way is to create a note manager to wrap access to the array.
class NoteManager {
subscript(index: Int) -> Note {
get {
return values[index]
}
set {
defer { onUpdate() }
values[index] = newValue
}
}
func append(_ newNote: Note) {
defer { onUpdate() }
values.append(newNote)
}
func remove(at index: Int) -> Note {
defer { onUpdate() }
return values.remove(at: index)
}
private func onUpdate() {
print("hi")
}
private var values = [Note]()
}
extension Global {
static var managedNotes = NoteManager()
}
Global.managedNotes.append(Note())
Global.managedNotes[0] = Note()
Global.managedNotes.remove(at: 0)
As per #staticVoidMan comment , If you make your model , a struct, rather than a class, then the property observer didSet will work for your Note model's own properties as well.
import Foundation
struct Note {
var name: String
}
struct Global {
static var notes: Array<Note> = [] {
didSet {
print("hi")
}
}
}
Global.notes.append(Note(name: "Shubham"))
Global.notes.append(Note(name: "Bakshi"))
Global.notes[0].name = "Boxy"
This will print the following on the console :
hi
hi
hi
Swift Array is a struct, and structs are value-type which means they change completely when elements are added/removed/replaced. Hence when you add/remove/replace a Note, the didSet property observer gets called as the array has been set again.
However, as per you question:
Is there a way to print("hi") every time when one of the Note objects in the array is modified?
By this I am assuming that you want to do something when an element within this array is accessed and an internal property is modified.
This would have been fine if you were dealing with only value-type objects, i.e. had your Note object also been a struct, then changing anything inside one Note would have caused the array to change as well.
But your Note object is a class, i.e. reference-type, and stays as the same object even if it's internal elements change. Hence your array doesn't need to update and didSet does not get called.
Read: Value and Reference Types
KVO Solution:
Now... Since your Note is subclassing NSObject, you can use the KVO concept
As per the following working example, we observe only one property of the Note class.
If you want to observe more properties then you will need to observe those many more keypaths.
Example:
class Note: NSObject {
#objc dynamic var content = ""
init(_ content: String) {
self.content = content
}
}
class NoteList {
var notes: [Note] = [] {
didSet {
print("note list updated")
//register & save observers for each note
self.noteMessageKVOs = notes.map { (note) -> NSKeyValueObservation in
return note.observe(\Note.content, options: [.new, .old]) { (note, value) in
print("note updated: \(value.oldValue) changed to \(value.newValue)")
}
}
}
}
//array of observers
var noteMessageKVOs = [NSKeyValueObservation]()
}
let list = NoteList()
list.notes.append(Note("A")) //note list updated
list.notes.append(Note("B")) //note list updated
list.notes[0].content = "X" //note updated: A changed to X
list.notes[1].content = "Y" //note updated: B changed to Y
Notes:
NSObject is required for KVO
#objc dynamic is required to make a property observable
\Note.message is a keypath
noteMessageKVOs are required to keep the observers alive

Swift use protocol extension defaults

I have
protocol ErrorContent {
var descriptionLabelText: String { get set }
}
extension ErrorContent {
var descriptionLabelText: String { return "Hi" }
}
struct LoginErrorContent: ErrorContent {
var descriptionLabelText: String
init(error: ApiError) {
...
}
}
and xcode is complaining that "Return from initializer without initializing all stored properties." What I want here is to just use the default value that I gave the descriptionLabelText in the protocol extension. Isn't that the point of protocol extensions? Anyways I'd like to understand why this is wrong and what I can do to use my default value.
Almost correct, just a couple of issues with your code:
You don't need to declare the variable in LoginErrorContent, as the implementation is already in the ErrorContent extension. Declaring it again overrides the extension implementation
If you want to use the extension computed property for descriptionLabelText, you can't specify that it is a setter, as it only returns a value.
Example:
protocol ErrorContent {
var descriptionLabelText: String { get }
}
extension ErrorContent {
var descriptionLabelText: String { return "Hi" }
}
struct LoginErrorContent: ErrorContent {
// Overriding the extension behaviour
var descriptionLabelText: String { return "Hello" }
init(error: ApiError) {
...
}
}

Swift struct extensions: 'Cannot convert return expression of type <type> to return type <type>'

Let's say you have the following structs and protocols:
struct Ticket {
var items: [TicketItem] = []
}
struct TicketItem {
}
protocol DisplayableTicket {
var displayedItems: [DisplayableTicketItem] { get }
}
protocol DisplayableTicketItem {}
Now, if I were to extend those structs like so:
extension Ticket: DisplayableTicket {
var displayedItems: [DisplayableTicketItem] {
return self.items
}
}
extension TicketItem: DisplayableTicketItem {}
I get the following error on the line return self.items:
Cannot convert return expression of type '[TicketItem]' to return type 'DisplayableTicketItem'
If I change the type of Ticket and TicketItem to class, I don't get an error. Why can't the Ticket struct contain an array of TicketItem structs and be extended as described above?
Like this:
extension Ticket: DisplayableTicket {
var displayedItems: [DisplayableTicketItem] {
return self.items.map{$0 as DisplayableTicketItem}
}
}

How do I make a referential type comparison in Swift using 'is'?

I can't figure out how to make a type comparison in Swift using the is operator, if the right side is a reference and not a hard-coded type.
For example,
class GmBuilding { }
class GmOffice: GmBuilding { }
class GmFactory: GmBuilding { }
class GmStreet {
var buildings: [GmBuilding] = []
func findAllBuildingsOfType(buildingType: GmBuilding.Type) -> [GmBuilding] {
var result: [GmBuilding] = []
for building in self.buildings {
if building is buildingType { // complains that buildingType is not a type
result.append(building)
}
}
return result
}
}
let myStreet = GmStreet()
var buildingList: [GmBuilding] = myStreet.findAllBuildingsOfType(GmOffice.self)
It complains that 'buildingType is not a type'. How can it be made to work?
A generic method may do what you want:
func findAllBuildingsOfType<T: GmBuilding>(buildingType: T.Type) -> [GmBuilding] {
// you can use `filter` instead of var/for/append
return buildings.filter { $0 is T }
}
This will work so long as you really do only want to determine the type at compile time:
let myStreet = GmStreet()
let buildingList = myStreet.findAllBuildingsOfType(GmOffice.self)
// T is set at compile time to GmOffice --------^
However, often when this question comes up, the follow-up question is, how do I store GmOffice.self in a variable and then have the type be determined at runtime? And that will not work with this technique. But if statically fixed types at compile time are enough for you, this should do it.
If AirSpeed Velocity's answer doesn't work for you, you can also accomplish this by bridging to Objective-C.
Make GmBuilding inherit from NSObject:
class GmBuilding: NSObject { }
And use isKindOfClass(_:) to check the type:
for building in self.buildings {
if building.isKindOfClass(buildingType) {
result.append(building)
}
}
Not as Swifty, but it works.
I'm sure there must be a better way than this, but it doesn't require inheritance from NSObject and it works at runtime - according to my playground
class GmBuilding { }
class GmOffice: GmBuilding { }
class GmFactory: GmBuilding { }
func thingIs(thing: GmBuilding, #sameTypeAs: GmBuilding) -> Bool
{
return thing.dynamicType === sameTypeAs.dynamicType
}
var foo: GmOffice = GmOffice()
thingIs(foo, sameTypeAs: GmOffice()) // true
thingIs(foo, sameTypeAs: GmFactory()) // false
The main reason I instantiate an object (you can use a singleton instead) is because I can't figure out how to declare a parameter to be a metatype.
It also doesn't work for
thingIs(foo, sameTypeAs: GmBuilding()) // false :=(
As a final resort, using Obj-C reflect function:
import ObjectiveC
func isinstance(instance: AnyObject, cls: AnyClass) -> Bool {
var c: AnyClass? = instance.dynamicType
do {
if c === cls {
return true
}
c = class_getSuperclass(c)
} while c != nil
return false
}
class GmBuilding { }
class GmOffice: GmBuilding { }
class GmFactory: GmBuilding { }
isinstance(GmOffice(), GmOffice.self) // -> true
isinstance(GmOffice(), GmFactory.self) // -> false
isinstance(GmOffice(), GmBuilding.self) // -> true