Hi to all,
When I run a Matlab code which generate two plot, these are overplotted (the second over the first).
I would like obtain a result as this figure, where the two plots are like in a subplot(211) and subplot(212), the first and the second in two colons, but without using subplot.
It is possible?
UPDATE
I generate this two plot with two subfuncion:
function create_figure(X1, YMatrix1, p)
%CREATE_FIGURE(X1, YMATRIX1)
% X1: vector of x data
% YMATRIX1: matrix of y data
% P: parameters used in legend
% Create figure
figure1 = figure('Name','Acceleration Power vs. Velocity LPF 1st order');
...
and
function create_figure_gamma(X1, YMatrix1, p)
%CREATE_FIGURE_GAMMA(X1, YMATRIX1, P)
% X1: vector of x data
% YMATRIX1: matrix of y data
% P: parameters used in legend
% Create figure
figure1 = figure('Name','gamma trend vs. Velocity');
...
Of course, I can give in output the parameter figure1, writing:
function figure1 = create_figure(X1, YMatrix1, p)
I think that which this parameter is possible set the position of the two plots, but I do not know the procedure respect the generic window size.
You could also set the Units to 'normalized' and enter relative positions for the figures:
set(h1,'Units','normalized');
set(h2,'Units','normalized');
set(h1,'Position',[0.1021 0.1708 0.2917 0.3500]);
set(h2,'Position',[0.4021 0.1700 0.2917 0.3508]);
This way you are independent of the current screen resolution.
This would produce two figures with plots side by side:
x = 0:0.1:2*pi;
y1 = sin(x);
y2 = cos(x);
h1=figure
plot(x,y1);
h2=figure
plot(x,y2);
% x, y, width, height
set(h1,'Position',[20 616,560,420])
set(h2,'Position',[20+560 616,560,420])
Related
I wanted to generate a plot (X vs Y), and Z values depend on the Y. The example is shown in the figure below. The matrix size of X is same with Z but not Y. I can plot Z against X, but I wanted to combine all the plot into a single plot and become Y against X. I can plot multiple plots into a single plot but the plot is overlapping each other.
My question is there any method I can merge multiple plots into a single plot without overlapping each plot as the difference between each plot is very small (e.g Z1=1,2,3,4,5 and Z2=1.0001,2.0002,3.0001,4.0002,5.0001). So, I wanted to set each Z plot at different Y axis. (e.g Z1 at Y=0, Z2 at Y=2 ...)
Does anyone have any suggestions or idea?
Thank You
I'll clarify the ideas I wrote in a comment.
First, let's get some data:
x = 470:0.1:484;
z1 = cos(x)/2;
z2 = sin(x)/3;
z3 = cos(x+0.2)/2.3;
I'll plot just three data sets, all of this is trivial to extend to any number of data sets.
Idea 1: multiple axes
The idea here is simply to use subplot to create a small-multiple type plot:
ytick = [-0.5,0.0,0.5];
ylim = [-0.9,0.9]);
figure
h1 = subplot(3,1,1);
plot(x,z1);
set(h1,'ylim',ylim,'ytick',ytick);
title('z1')
h2 = subplot(3,1,2);
plot(x,z2);
set(h2,'ylim',ylim,'ytick',ytick);
title('z2')
h3 = subplot(3,1,3);
plot(x,z3);
set(h3,'ylim',ylim,'ytick',ytick);
title('z3')
Note that it is possible to, e.g., remove the tick labels from the top two plot, leaving only labels on the bottom one. You can then also move the axes so that they are closer together (which might be necessary if there are lots of these lines in the same plot):
set(h1,'xticklabel',[],'box','off')
set(h2,'xticklabel',[],'box','off')
set(h3,'box','off')
set(h1,'position',[0.13,0.71,0.8,0.24])
set(h2,'position',[0.13,0.41,0.8,0.24])
set(h3,'position',[0.13,0.11,0.8,0.24])
axes(h1)
title('')
ylabel('z1')
axes(h2)
title('')
ylabel('z2')
axes(h3)
title('')
ylabel('z3')
Idea 2: same axes, plot with offset
This is the simpler approach, as you're dealing only with a single axis. #Zizy Archer already showed how easy it is to shift data if they're all in a single 2D matrix Z. Here I'll just plot z1, z2+2, and z3+4. Adjust the offsets to your liking. Next, I set the 'ytick' property to create the illusion of separate graphs, and set the 'yticklabel' property so that the numbers along the y-axis match the actual data plotted. The end result is similar to the multiple axes plots above, but they're all in a single axes:
figure
plot(x,z1);
hold on
plot(x,z2+2);
plot(x,z3+4);
ytick = [-0.5,0.0,0.5];
set(gca,'ytick',[ytick,ytick+2,ytick+4]);
set(gca,'yticklabel',[ytick,ytick,ytick]);
text(484.5,0,'z1')
text(484.5,2,'z2')
text(484.5,4,'z3')
The simplest would be to shift Z data. But note that Z2 would look like to be oscillating around 1 - so this is a neat visual representation, but might mislead.
% Simple version - shift Z curves by 0, 1, ... (as recommended by #Cris Luengo)
shiftMat = repmat(0 : size(Z, 2)-1, size(Z,1), 1);
Z = Z + shiftMat;
%Min shift up to have non-overlapping - curves touching
for i = 2 : size(Z, 2)
Zdif = (Z(:, i-1) - Z(:, i));
Z(:, i) = Z(:, i) + max(Zdif); % + 0.01 to separate them a little bit.
end
%Bigger shift up, to have all points of Z(2) equal or above all points of z1.
for i = 2 : numZ
Zdif = max(Z(:, i-1))-min(Z(:, i));
Z(:, i) = Z(:, i) + Zdif;
end
Another possibility is to have multiple Y axis and each Z curve plotted against its own Y axis. This is likely fancier and shouldn't mislead, but it is way more work, even after you grab the function, as you still need to position all those axes. MATLAB by default lets you use only 2 axes, so grab a function from fileexchange to add more: https://www.mathworks.com/matlabcentral/fileexchange/9016-addaxis
I'm very new to Matlab. I'm trying to plot X, where X is an 100x1 vector, against Y, which is an 100x10 matrix. I want the result to be X vs 10 different Y values all in the same graph, different colors for each column. The only way I can think of plotting each column of this matrix is by using the hold command, but then I have to split it up so I get each column individually. Is there an easy way to do this?
Use repmat to expand X to be the same size as Y. Try plotting them with plot(X,Y) and if it looks strange, transpose each one (plot(X',Y')).
You can use linespec arguments to select linestyle, marker style, etc. For example, plot(X,Y,'.') would indicate a point at each vertex with no connecting lines.
You don't need to use repmat, just use plot instead of scatter:
plot(X,Y,'o')
Here's an example:
% some arbitrary data:
X = linspace(-2*pi,2*pi,100).'; % size(X) = 100 1
Y = bsxfun(#plus,sin(X),rand(100,10)); % size(Y) = 100 10
% you only need the next line:
plot(X,Y,'o')
legend('show')
I have a spectral data (1000 variables on xaxis, and peak intensities as y) and a list of peaks of interest at various specific x locations (a matrix called Peak) which I obtained from a function I made. Here, I would like to draw a line from the maximum value of each peaks to the xaxis - or, eventually, place a vertical arrow above each peaks but I read it is quite troublesome, so just a vertical line is welcome. However, using the following code, I get "Error using line Value must be a vector of numeric type". Any thoughts?
X = spectra;
[Peak,intensity]=PeakDetection(X);
nrow = length(Peak);
Peak2=Peak; % to put inside the real xaxis value
plot(xaxis,X);
hold on
for i = 1 : nbrow
Peak2(:,i) = round(xaxis(:,i)); % to get the real xaxis value and round it
xline = Peak2(:,i);
line('XData',xline,'YData',X,'Color','red','LineWidth',2);
end
hold off
Simple annotation:
Here is a simple way to annotate the peaks:
plot(x,y,x_peak,y_peak+0.1,'v','MarkerFaceColor','r');
where x and y is your data, and x_peak and y_peak is the coordinates of the peaks you want to annotate. The add of 0.1 is just for a better placing of the annotation and should be calibrated for your data.
For example (with some arbitrary data):
x = 1:1000;
y = sin(0.01*x).*cos(0.05*x);
[y_peak,x_peak] = PeakDetection(y); % this is just a sketch based on your code...
plot(x,y,x_peak,y_peak+0.1,'v','MarkerFaceColor','r');
the result:
Line annotation:
This is just a little bit more complicated because we need 4 values for each line. Again, assuming x_peak and y_peak as before:
plot(x,y);
hold on
ax = gca;
ymin = ax.YLim(1);
plot([x_peak;x_peak],[ymin*ones(1,numel(y_peak));y_peak],'r')
% you could write instead:
% line([x_peak;x_peak],[ymin*ones(1,numel(y_peak));y_peak],'Color','r')
% but I prefer the PLOT function.
hold off
and the result:
Arrow annotation:
If you really want those arrows, then you need to first convert the peak location to the normalized figure units. Here how to do that:
plot(x,y);
ylim([-1.5 1.5]) % only for a better look of the arrows
peaks = [x_peak.' y_peak.'];
ax = gca;
% This prat converts the axis unites to the figure normalized unites
% AX is a handle to the figure
% PEAKS is a n-by-2 matrix, where the first column is the x values and the
% second is the y values
pos = ax.Position;
% NORMPEAKS is a matrix in the same size of PEAKS, but with all the values
% converted to normalized units
normpx = pos(3)*((peaks(:,1)-ax.XLim(1))./range(ax.XLim))+ pos(1);
normpy = pos(4)*((peaks(:,2)-ax.YLim(1))./range(ax.YLim))+ pos(2);
normpeaks = [normpx normpy];
for k = 1:size(normpeaks,1)
annotation('arrow',[normpeaks(k,1) normpeaks(k,1)],...
[normpeaks(k,2)+0.1 normpeaks(k,2)],...
'Color','red','LineWidth',2)
end
and the result:
I am doing something similar to the following example:
t=linspace(0,1);
z=rand(1);
theta=pi*rand(1);
a_range=[1,2,3];
for nplot=1:3
a=a_range(nplot);
x=z*t.^2+a*sin(theta);
end
fname=['xsin.mat'];
save(fname)
the parameter a has three different values. For each value of a, I want to plot the function in one single figure. So at the end I will have three figures. I can do it using subplot but this will generate three plots in one figure which is not what I want.
In a new script, I load the mat file:
load('xsin.mat')
for nplot=1:3
figure(nplot)
plot(t,x)
end
but I get one figure not three as I should have. I mean for a=1, I should plot the curve in figure 1; for a=2, I should plot the curve in figure 2 and so on. How can I do this? Any help is appreciated.
You are overwriting x in every iteration; you could modify your code by saving each x for the respective nplot in a separate column of a matrix X (with minimal changes to your code):
t=linspace(0,1);
z=rand(1);
theta=pi*rand(1);
a_range=[1,2,3];
X = NaN(length(t), length(a_range)); % Create matrix to hold x values
for nplot=1:3
a = a_range(nplot);
x = z * t.^2 + a * sin(theta);
X(:,nplot) = x; % Store x in column of X
end
fname=['xsin.mat'];
save(fname)
Then, to create the figures:
load('xsin.mat')
for nplot=1:3
x = X(:,nplot); % Retrieve x from column of X
figure(nplot)
plot(t,x)
end
I am trying to simulate a network of mobile robots that uses artificial potential fields for movement planning to a shared destination xd. This is done by generating a series of m-files (one for each robot) from a symbolic expression, as this seems to be the best way in terms of computational time and accuracy. However, I can't figure out what is going wrong with my gradient computation: the analytical gradient that is being computed seems to be faulty, while the numerical gradient is calculated correctly (see the image posted below). I have written a MWE listed below, which also exhibits this problem. I have checked the file generating part of the code, and it does return a correct function file with a correct gradient. But I can't figure out why the analytic and numerical gradient are so different.
(A larger version of the image below can be found here)
% create symbolic variables
xd = sym('xd',[1 2]);
x = sym('x',[2 2]);
% create a potential function and a gradient function for both (x,y) pairs
% in x
for i=1:size(x,1)
phi = norm(x(i,:)-xd)/norm(x(1,:)-x(2,:)); % potential field function
xvector = reshape(x.',1,size(x,1)*size(x,2)); % reshape x to allow for gradient computation
grad = gradient(phi,xvector(2*i-1:2*i)); % compute the gradient
gradx = grad(1);grady=grad(2); % split the gradient in two components
% create function file names
gradfun = strcat('GradTester',int2str(i),'.m');
phifun = strcat('PotTester',int2str(i),'.m');
% generate two output files
matlabFunction(gradx, grady,'file',gradfun,'outputs',{'gradx','grady'},'vars',{xvector, xd});
matlabFunction(phi,'file',phifun,'vars',{xvector, xd});
end
clear all % make sure the workspace is empty: the functions are in the files
pause(0.1) % ensure the function file has been generated before it is called
% these are later overwritten by a specific case, but they can be used for
% debugging
x = 0.5*rand(2);
xd = 0.5*rand(1,2);
% values for the Stackoverflow case
x = [0.0533 0.0023;
0.4809 0.3875];
xd = [0.4087 0.4343];
xp = x; % dummy variable to keep x intact
% compute potential field and gradient for both (x,y) pairs
for i=1:size(x,1)
% create a grid centered on the selected (x,y) pair
xGrid = (x(i,1)-0.1):0.005:(x(i,1)+0.1);
yGrid = (x(i,2)-0.1):0.005:(x(i,2)+0.1);
% preallocate the gradient and potential matrices
gradx = zeros(length(xGrid),length(yGrid));
grady = zeros(length(xGrid),length(yGrid));
phi = zeros(length(xGrid),length(yGrid));
% generate appropriate function handles
fun = str2func(strcat('GradTester',int2str(i)));
fun2 = str2func(strcat('PotTester',int2str(i)));
% compute analytic gradient and potential for each position in the xGrid and
% yGrid vectors
for ii = 1:length(yGrid)
for jj = 1:length(xGrid)
xp(i,:) = [xGrid(ii) yGrid(jj)]; % select the position
Xvec = reshape(xp.',1,size(x,1)*size(x,2)); % turn the input into a vector
[gradx(ii,jj),grady(ii,jj)] = fun(Xvec,xd); % compute gradients
phi(jj,ii) = fun2(Xvec,xd); % compute potential value
end
end
[FX,FY] = gradient(phi); % compute the NUMERICAL gradient for comparison
%scale the numerical gradient
FX = FX/0.005;
FY = FY/0.005;
% plot analytic result
subplot(2,2,2*i-1)
hold all
xlim([xGrid(1) xGrid(end)]);
ylim([yGrid(1) yGrid(end)]);
quiver(xGrid,yGrid,-gradx,-grady)
contour(xGrid,yGrid,phi)
title(strcat('Analytic result for position ',int2str(i)));
xlabel('x');
ylabel('y');
subplot(2,2,2*i)
hold all
xlim([xGrid(1) xGrid(end)]);
ylim([yGrid(1) yGrid(end)]);
quiver(xGrid,yGrid,-FX,-FY)
contour(xGrid,yGrid,phi)
title(strcat('Numerical result for position ',int2str(i)));
xlabel('x');
ylabel('y');
end
The potential field I am trying to generate is defined by an (x,y) position, in my code called xd. x is the position matrix of dimension N x 2, where the first column represents x1, x2, and so on, and the second column represents y1, y2, and so on. Xvec is simply a reshaping of this vector to x1,y1,x2,y2,x3,y3 and so on, as the matlabfunction I am generating only accepts vector inputs.
The gradient for robot i is being calculated by taking the derivative w.r.t. x_i and y_i, these two components together yield a single derivative 'vector' shown in the quiver plots. The derivative should look like this, and I checked that the symbolic expression for [gradx,grady] indeed looks like that before an m-file is generated.
To fix the particular problem given in the question, you were actually calculating phi in such a way that meant you doing gradient(phi) was not giving the correct results compared to the symbolic gradient. I'll try and explain. Here is how you created xGrid and yGrid:
% create a grid centered on the selected (x,y) pair
xGrid = (x(i,1)-0.1):0.005:(x(i,1)+0.1);
yGrid = (x(i,2)-0.1):0.005:(x(i,2)+0.1);
But then in the for loop, ii and jj were used like phi(jj,ii) or gradx(ii,jj), but corresponding to the same physical position. This is why your results were different. Another problem you had was you used gradient incorrectly. Matlab assumes that [FX,FY]=gradient(phi) means that phi is calculated from phi=f(x,y) where x and y are matrices created using meshgrid. You effectively had the elements of phi arranged differently to that, an so gradient(phi) gave the wrong answer. Between reversing the jj and ii, and the incorrect gradient, the errors cancelled out (I suspect you tried doing phi(jj,ii) after trying phi(ii,jj) first and finding it didn't work).
Anyway, to sort it all out, on the line after you create xGrid and yGrid, put this in:
[X,Y]=meshgrid(xGrid,yGrid);
Then change the code after you load fun and fun2 to:
for ii = 1:length(xGrid) %// x loop
for jj = 1:length(yGrid) %// y loop
xp(i,:) = [X(ii,jj);Y(ii,jj)]; %// using X and Y not xGrid and yGrid
Xvec = reshape(xp.',1,size(x,1)*size(x,2));
[gradx(ii,jj),grady(ii,jj)] = fun(Xvec,xd);
phi(ii,jj) = fun2(Xvec,xd);
end
end
[FX,FY] = gradient(phi,0.005); %// use the second argument of gradient to set spacing
subplot(2,2,2*i-1)
hold all
axis([min(X(:)) max(X(:)) min(Y(:)) max(Y(:))]) %// use axis rather than xlim/ylim
quiver(X,Y,gradx,grady)
contour(X,Y,phi)
title(strcat('Analytic result for position ',int2str(i)));
xlabel('x');
ylabel('y');
subplot(2,2,2*i)
hold all
axis([min(X(:)) max(X(:)) min(Y(:)) max(Y(:))])
quiver(X,Y,FX,FY)
contour(X,Y,phi)
title(strcat('Numerical result for position ',int2str(i)));
xlabel('x');
ylabel('y');
I have some other comments about your code. I think your potential function is ill-defined, which is causing all sorts of problems. You say in the question that x is an Nx2 matrix, but you potential function is defined as
norm(x(i,:)-xd)/norm(x(1,:)-x(2,:));
which means if N was three, you'd have the following three potentials:
norm(x(1,:)-xd)/norm(x(1,:)-x(2,:));
norm(x(2,:)-xd)/norm(x(1,:)-x(2,:));
norm(x(3,:)-xd)/norm(x(1,:)-x(2,:));
and I don't think the third one makes sense. I think this could be causing some confusion with the gradients.
Also, I'm not sure if there is a reason to create the .m file functions in your real code, but they are not necessary for the code you posted.