How to install libsvm in matlab - matlab

I'm using windows 7 and Matlab_R2011a. I'm trying to install LibSVM in these environments. I already installed Command Line Tools and I am trying to "make" file (go to unpacked folder of LibSVM on my Desktop, go to folder matlab and run "make"). However, I receive a compilers options as 0 and 1 but I couldn't find visual studio compiler even though I installed VS 2012

Your compiler version may not be supported/compatible with MATLAB R2011a.
First check Matlab page 'Supported and Compatible Compilers – Release R2011a' and then specify the version number.
For ex,if g++ X.Y is supported, replace CXX = g++ in the Makefile with CXX = g++-X.Y

Related

How to downgrade the gcc compiler?

I have to run a code. The code includes mex files. For building that code, it required gcc version of 4.4.
Following is the description of system
Windows 10
Visual Studio 2012
Matlab 2017a
And gcc version of my system is:
$gcc --version
gcc --version
gcc (GCC) 7.4.0
I do not know how to downgrade it. I have tried so many steps, but no use.
You'll need to install it first - Please use a previous question on the subject here:
Next - choose to use it on Matlab via :
mex -setup
#mano Here's my output of the mex -setup

How can I get Ada GNAT gcc 7.3 for Solaris 11?

We have a Solaris 11 system with gcc 7.3, we need to install the Ada package. On Linux gcc 7 came with the Ada/GNAT as part of the gcc install:
apt install gcc
I visited AdaCore looks like Solaris (SPARC) is not longer on the list. I need to use Ada95 and we want the same compiler on both Linux and Solaris in any case.
pkg install gcc
Only installed various C++ commands and Fortran.
pkg install gcc-ada
And variants like gcc7ada, found nothing to install.
If must, we can rebuild the Ada component of GCC 7, however I haven't found a clear cood-book style "How To ..."for that (yet).
Hopefully you can point me to these items in order of preference to help us get back-on-track.
Solaris 11 gcc-ada package for gcc7/Solaris 11 spark, and the package repository.
An 'alternative' package repository were I can retrieve the GCC Ada tooling.
Pre-build GCC 7 Ada module that we can copy to the right places.
Ready-rolled Build Ada/GNAT project for Solaris and how to download and get start building.
Instructions to download and build gcc-ada with gcc 7 on Solaris (or Unix).
From th epast few days searching about on Gnu Compiler Collection, Oracle, the package manager searches, google and so forth ... It really seems like there's next to no support for CGG Ada on Solaris these days.
I very interested in other solutions beyond that list. For instance, has anyone cross-compiled from Linux to Solaris? Would that work with GDB on the Solaris machine anyway?
Looking forward to your suggestions.
I've successfully built gcc 7.50 (x86_64 native with i386 cross-compiler) with GNAT on OpenIndiana (Hipster 2020/10) using the following procedure.
Download the bootstrap compiler from Dragonlace at http://downloads.dragonlace.net/src/ada-bootstrap.x86_64.solaris.511.tar.bz2
Get the illumos gcc 7.5.0 source from https://github.com/illumos/gcc/tree/il-7_5_0
Put the bootstrap compiler's bin directory at the front of $PATH, replace /usr/bin/gcc /usr/bin/cpp /usr/bin/g++ with symlinks to their counterparts in the bootstrap compiler directory (see note below re g++ and c++)
Make sure you've got gnu-binutils and gmake; then run contrib/download_prerequisites
Configure with
--enable-languages='c ada c++' --build=x86_64-aux-solaris2.11 --enable-threads=posix --disable-libmudflap --disable-libgomp --disable-libssp --disable-libquadmath --disable-nls --disable-shared --disable-lto --disable-libstdcxx-pch --enable-multilib --with-gnu-as --with-as=/usr/bin/gas --without-gnu-ld --with-ld=/usr/bin/ld
gmake and then gmake install
NOTES:
This setup should be close enough to Solaris 11 to work. If it doesn't, try using the regular gcc 7.5.0 release rather than the illumos-modified branch.
If you get stuck at a linking stage, try using a gcc ld, but you should definitely try to use the Solaris ld first. The gnu as (gas) makes the build go much more smoothly. I didn't have any problems, but if you get stuck at the end of stage 1 or the beginning of stage 2, try setting $CONFIG_SHELL=/usr/bin/ksh -- I think it has been fixed, but at least with older gcc releases one needed to specify ksh because the built-in sh had some non-POSIX peculiarities that didn't work with some of the components' makefiles
I couldn't get one of the support libs for gnat to compile easily without building gcc c++ and using g++ with a full bootstrap. You might be able to figure it out, but the path of least resistance is likely to build gcc c++ and put the g++ symlink in /usr/bin, which is where the makefile wanted to find it.
Please note that I don't know much about Solaris, but a quick search on Google gave me the website OpenCSW. This website provides the packages gcc4ada and gcc5ada.
It appears that gcc5ada is build using a makefile (as found here, in particular notice line 424). A similar makefile exists for gcc7ada (as found here, in particular notice line 426). However, while it seems that the package "gcc7ada" can be created with the latter makefile, it is not published on the OpenCSW.org website (website is no longer updated?).
You could try to install gcc5ada first and then use this old GCC/GNAT compiler as a bootstrapper for compiling the required version (using the GCC 7 makefile).

Matlab 2015a set mingw64 as mex compiler

I have Matlab2015a 64bit running on Win7 and I want to use Mingw-w64 compiler for mex files but the command *
mex -setup
says
MEX configured to use 'Microsoft Visual C++ 2012 (C)' for C language
compilation.
I have installed Mingw-w6 compiler in
C:\mingw-w64\x86_64-4.9.2-win32-seh-rt_v4-rev4\mingw64\bin
I even had a look at this question, but I could'n solve it.
How can I switch to Mingw gcc compiler?
To see which compilers are supported by your MATLAB version and OS go to
mathworks.com/support/compilers/VERSION/index.html
where VERSION is your version. i.e.
mathworks.com/support/compilers/R2015a/index.html
If a compiler is not there, then you can not use it. In your case, its not there.

Using GCC (MinGW) as MATLAB's MEX compiler

I've been given a project to run on MATLAB R2011a. As there are several .c files in there - I need to set up GCC as the MEX compiler for that project. However, I cannot seem to find any explanation as to how to set it up. I've tried a script program called gnumex - but it failed (probably set up for an older version of MATLAB).
Any idea how to set it up?
Why not adjust the mexopts.bat file in your directory? That way you can use the "mex" command transparently to compile anything, as usual in MATLAB, the same as if it was configured by MATLAB using mex -setup. I'm surprised nobody did this before.
The file below is for x64 version of Matlab and Mingw. I'm using the TDM Mingw64 distribution, which I installed in p:\mingw64-tdm. I have Matlab installed in p:\matlab\R2012a -- edit those accordingly.
This is the mexopts.bat file I'm using, copy paste this in %USERPROFILE%\AppData\Roaming\MathWorks\MATLAB\R2012a\mexopts.bat:
#echo off
set MINGWPATH=p:\mingw64-tdm
set PATH=%MINGWPATH%\bin;%PATH%
set COMPILER=gcc
set COMPFLAGS=-c -m64 -I"%MATLAB%\extern\include" -DMATLAB_MEX_FILE -Wall -std=c99
set OPTIMFLAGS=-O3 -DNDEBUG
set DEBUGFLAGS=-g
set NAME_OBJECT=-o
set LINKER=gcc
set LINKFLAGS=-shared -L"%MATLAB%\bin\win64" -L"%MATLAB%\extern\lib\win64\microsoft" -lmex -lmx -leng -lmat -lmwlapack -lmwblas
set NAME_OUTPUT=-o "%OUTDIR%%MEX_NAME%%MEX_EXT%"
Then you can just try doing this in Matlab:
mex -v p:\matlab\R2012a\extern\examples\mex\yprime.c
which yprime
Should yield b:\code\m\yprime.mexw64 (or whatever the current folder is). Then if you do:
yprime(1,1:4)
You should see:
ans =
2.0000 8.9685 4.0000 -1.0947
Which means you're in business. Good luck!
EDIT Oct 2014: I now use an improved mexopts.bat file than the above with a different MinGW64 (yields slightly faster binary code than TDM's). See my homepage for details and downloads.
In Matlab 2011b, just compile and link directly in mingw64 or cygwin environment.
MINGWPATH=c:/MinGW64
CYGPATH=c:/cygwin
MATLABROOT=c:/Progra~1/MATLAB/R2011b
CC=$(MINGWPATH)/bin/x86_64-w64-mingw32-gcc
CFLAG= -Wall -m64 -O3 -I$(MATLABROOT)/extern/include $(SRC) $(LIBS) -o $(EXE)
MEXFLAG=-m64 -shared -DMATLAB_MEX_FILE -I$(MATLABROOT)/extern/include -Wl,--export-all-symbols $(LIBS) $(MEXSRC) -o $(MEXTGT).mexw64
LIBS= -L$(MATLABROOT)/bin/win64 -L$(MATLABROOT)/extern/lib/win64/microsoft -lmex -lmx -lmwlapack -lmwblas -leng
EXE=../bin/engwindemo.exe
MEXTGT=
SRC=engwindemo.c
MEXSRC=
all:$(EXE)
$(EXE): $(SRC)
$(CC) $(CFLAG) -ladvapi32 -luser32 -lgdi32 -lkernel32 -lmingwex -o $(EXE)
#rm -f *.o*
$(MEXTGT): $(MEXSRC)
$(CC) $(MEXFLAG) -ladvapi32 -luser32 -lgdi32 -lkernel32 -lmingwex
#rm -f *.o*
Put this makefile on the source code directory and make. No dll files conversion needed.
As of MATLAB R2015b, MinGW is officially supported!
It's now at the top of the list of supported compilers.
See here for the official instructions for downloading MinGW (they recommend TDB-GCC).
There are several limitations and caveats listed (e.g. don't link with libraries compiled with other compilers, you have to catch your exceptions inside the MEX file, etc.).
Below is my old way of making an XML file to do the same thing.
The years have gone by and MATLAB (as of R2014a) has moved to a new XML-based system for configuring MEX files. MATLAB still temporariily supports legacy .bat files, for now, but it will bother you about it. Another change is that are distinct C and C++ configurations (more later).
What has stayed the same is that you just need to download and extract a MinGW distribution and point MATLAB to it. There is still no need for MSYS, cygwin or gnumex. The only tricky part is pointing MATLAB to it, but here is a solution.
Short Version
Download and extract a MinGW distribution. Pick one, such as MinGW-w64 (64-bit) or TDM-GCC (32-bit and 64-bit options).
Customize the XML config file, using this one as a template (details in long version below).
Set MINGWROOT environment variable.
Run mex -setup:[xmlfile] [C|C++].
Long Version
For MinGW-w64, I do the following to set it up:
Grab the latest revision for w64 from Sourceforge (or use the installer to choose the toolchain you want, picking a pthread or Win32 threads version depending on your needs).
Extract it so that you have a path to the compiler like C:\mingw-w64\x86_64-4.9.2-release-posix-seh-rt_v3-rev1\bin\x86_64-w64-mingw32-g++.exe. There is no need for MSYS, cygwin, or any other environment if you plan on compiling in MATLAB with the mex command. Check your PATH environment variable to make sure you don't have multiple compilers (g++) on your path, preferably none. Verify with a fresh command prompt.
Set it up with a custom XML configuration file. On my GitHub repo, I have posted C++ configurations for MinGW-w64 in both file types: mex_C++_mingw-w64.xml and legacy mingw_mexopts.bat. Start with that as a template and (optionally) edit the XML file with a descriptive name and version of the MinGW distribution you downloaded and extracted.
Set (or create) the MINGWROOT environment variable. This is what allows the mex command to locate the compiler. You can do this in MATLAB (and every time MATLAB starts with a startup.m script in userpath) with setenv, or just once with the Windows properties dialog or the native Windows 7 setx.exe command.
Run mex -setup:C:\actual\configFilePath.xml C++. For example, using the .xml file to set up C++ MEX file compilation:
setenv('MINGWROOT','H:\mingw-w64\x86_64-4.9.2-release-posix-seh-rt_v3-rev1')
mex -setup:H:\building\GitHub\MATLAB\MinGW\mex_C++_mingw-w64.xml C++
The output should look like this:
MEX configured to use 'MinGW-w64 GCC 4.9.2 posixthreads seh' for C++ language compilation.
If needed, set up the C compiler in a similar manner with a new XML config file specifying the C language, the C compiler frontend (e.g. "x86_64-w64-mingw32-gcc.exe" which won't automatically link the C++ standard library), adjust the link libraries as needed, compiler flags (e.g. change -std=c++11 to -std=c99), etc.
Note about static vs. dynamic linking of runtime libraries
Libraries such as a MEX file created with MinGW-w64 as above may depend on a few DLLs (at runtime): LIBGCC_S_SEH-1.DLL (for the seh exception distributions) and LIBSTDC++-6.DLL, and possibly libwinpthread-1.dll if you chose a pthreads distribution instead of Win32 threads. If you don't want to copy these files around, you can statically link the runtime libraries into your MEX file by adding the following switches:
-static-libgcc -static-libstdc++
There's a comment in the XML template about this. See here for info about libpthread-1.dll.
With TDM-GCC, the opposite is true: the runtimes (including pthread) are statically linked automatically. To link dynamically, which will require the DLLs but reduce your MEX file size, you need:
-shared-libgcc -shared-libstdc++
EDIT: There seems to be a much better way with MinGW; see my other answer.
You can compile a .mex file using gcc if you have Matlab installed, from the command line. Some might say it's a little tedious the first time.
First things first - what Matlab do you use? if it's 64-bits, MinGW won't help you, because it's 32-bit. I will therefore show how to use MinGW-w64 instead. Understanding how to do this with 32-bit MinGW should be straightforward.
Add C:\MinGW-64\bin\ to your path. You won't regret this :)
Compile your .c files using gcc:
x86_64-w64-mingw32-c++ -m64 -shared -I"C:\Program Files\MATLAB\R2010b\extern\include" -o bla.mexw64 -DMATLAB_MEX_FILE -Wl,--export-all-symbols *.cpp
This will result in a bunch of linker errors, such as
undefined reference to `mexErrMsgTxt'
To solve this problem, you'll have to create an import library which connects with libmex.dll, libmx.dll, libmat.dll and libeng.dll (you might have others, but these are the main ones)
List the functions you're missing, and, well, guess what dll they're coming from. Hint: mexErrMsgTxt is from libmex.dll, because it starts with "mex"...
For every dll you need to export, create a .def file containing
EXPORTS
... relevant function names go here, such as mexErrMsgTxt, matOpen, etc.
Execute the following command, to create import libraries:
x86_64-w64-mingw32-dlltool -d libmx.def --dllname libmx.dll -l libmx.a
(Same for the rest of the .def files)
Now you're good to go!
x86_64-w64-mingw32-c++ -m64 -shared -I"C:\..." -DMATLAB_MEX_FILE -o bla.mexw64 -Wl,--export-all-symbols *.cpp libmex.a libmx.a libmat.a libeng.a
Things which can be done better -
instead of --export-all-symbol, only export mexFunction (requires creating another .def file, or adding "__declspec(dllexport)" before void mexFunction(...)).
MinGW is capable of direct-linking a DLL; that is, it will create a kind of an import library on the fly when linking.
This means compilation can be performed in one step:
x86_64-w64-mingw32-c++ -m64 -shared -I"%MATLAB%/extern/include" -DMATLAB_MEX_FILE -o bla.mexw64 -Wl,--export-all-symbols *.cpp -L"%MATLAB%/bin/win64" -lmex -lmx -leng -lmat
Matlab links to external code (C++, Fortran, Java etc) using MEX files. (http://gnumex.sourceforge.net/)
Setting up Compiler:
Install TDM-GCC (C++ Compiler "C:\MinGW32\bin;") from http://tdm-gcc.tdragon.net/download
Install Cygwin (toolkit provides Unix tools on the Windows platform) from (http://ptolemy.eecs.berkeley.edu/ptolemyII/ptII4.0/cygwin.htm). Download and Install cygwingDevel.exe
Obtain the gnumex archive via (https://sourceforge.net/projects/gnumex) and extract the gnumex to ($MATLABHOME\gnumex). Where $MATLABHOME would be for example (C:\Program Files\MATLAB\R2010a)
Add this directory ($MATLABHOME\gnumex) to the Matlab path (File->Set Path in Matlab). Note: Run Matlab with Administrator priviledges.
In Matlab, type gnumex at the prompt. Fill in appropriate paths like;
MinGW_Root = C:\MinGW32, Cygwin_Root=C:\cygwin
Do 'File->Save Config', then click 'Make Options file'. Exit from gnumex configure window.
Testing:
Copy mexopts.bat (%AppData%\MathWorks\MATLAB\R2010a\mexopts.bat) to the working directory (%UserProfile%\Documents\MATLAB) for this test.
In matlab, execute the following at prompt;
mex -f mexopts.bat "C:\Program Files\MATLAB\R2010a\extern\examples\mex\yprime.c"
You get (%UserProfile%\Documents\MATLAB\yprime.mexw32) when you type;
which yprime
Run it by typing at Matlab prompt >> yprime(1,1:4) and see if you get 2.0000 8.9685 4.0000 -1.0947.
Now just copy mexopts.bat to $MATLABHOME\bin and it should work from anywhere.
Matlab on Linux Platform:
At Linux prompt, install the following;
sudo apt-get install gcc g++ gfortran
In Matlab, execute the following at prompt;
mex -setup
The options files available for mex are: **1**: /usr/local/MATLAB/R2012b/bin/mexopts.sh : Select option 1. To test the working, execute the following at Matlab prompt;
mex "/usr/local/MATLAB/R2012b/extern/examples/mex/yprime.c"
yprime(1,1:4)
In case you get the warning;
Warning: You are using gcc version "4.6.3-1ubuntu5)". The version
currently supported with MEX is "4.4.6".
For a list of currently supported compilers see:
http://www.mathworks.com/support/compilers/current_release/
At Linux prompt:
sudo apt-get install gcc-4.4 g++-4.4 gfortran-4.4
sudo gedit /usr/local/MATLAB/R2012b/bin/mexopts.sh
Change 'gcc' to 'gcc-4.4' ,'g++' to 'g++-4.4' , 'gfortran' to 'gfortran-4.4' at all instances of CC = 'gcc' , CXX = 'g++' and FC = 'gfortran'.
Save the file and exit.
This is a detailed walkthorugh of this answer. Therefore, all the credit should go to that answer.
1 Install MinGW-w64:
1.1 Download this MinGW64-w64 build and its update:
(http://sourceforge.net/projects/mingw-w64/files/Toolchains%20targetting%20Win64/Personal%20Builds/sezero_4.5_20111101/mingw-w64-bin_x86_64-mingw_20111101_sezero.zip/download)
(http://sourceforge.net/projects/mingw-w64/files/Toolchains%20targetting%20Win64/Personal%20Builds/sezero_4.5_20111101/sezero_20111101-w64-update-rev.5747.zip/download)
(http://sourceforge.net/projects/mingw-w64/files/Toolchains%20targetting%20Win64/Personal%20Builds/sezero_4.5_20111101/README-mingw-w64-20111101_sezero.txt/download)
1.2 Install (unzip) the downloaded archives:
1.2.1 Unzip the build file and move the resulting mingw64\ folder in c:\
1.2.2 Unzip and copy (overwrite) the update file on c:\mingw64
1.3 Add C:\mingw64\bin to the Path variable:
set PATH=C:\mingw64\bin;%PATH%
2 On a commandline (outside Matlab environment), compile your *.c files: For example, CCODEFILE.c (Assuming Matlab 2012b installed in C:\Program Files\MATLAB\R2012b\ folder):
"c:\mingw64\bin\x86_64-w64-mingw32-g++.exe" -m64 -shared -I"C:/Program Files/MATLAB/R2012b/extern/include" -DMATLAB_MEX_FILE -o CCODEFILE.mexw64 -Wl,--export-all-symbols CCODEFILE.c -L"C:/Program Files/MATLAB/R2012b/bin/win64" -lmex -lmx -leng -lmat
3 Then, any Matlab code should work fine when it calls the CCODEFILE function.
If you couldn't install Mingw-w64 using the Add-Ons toolbar of Matlab2016b on Windows, you can use this workaround. Keep this in mind that you need to change the paths according to your installation paths.
The Mingw-w64 official website redirects you to Win-builds project which is a package manager for a bundle of open source development tools. So, first you need to install the Win-builds.
While installing Win-builds, make sure you are entering a path that does not contain any spaces e.g. C:\Win-builds.
After installing Win-builds, just hit the Process button to install all packages where Mingw-w64 is among them.
Now that you installed Mingw-w64, you need to define the MW_MINGW64_LOC environment variable which Matlab uses it to detect Mingw-w64.
To define the environment variable do the following steps:
Control panel\ System\ Advanced system settings\ Advanced\ Environment Variable\ User variables for $YOUR_USER_NAME\ New
Put Variable name = MW_MINGW64_LOC and Variable value = C:\Win-builds. Notice that the Win-builds puts all executables in C:\Win-builds\bin and by defining this variable, Matlab will automatically scans the bin folder of the path looking for gcc.exe.
Now that you installed the Mingw-w64 and define the MW_MINGW64_LOC environment variable, it is time to build and test the yprime example. So Launch Matlab and type the following command (Do not forget to modify the path accordingly):
mex -v 'C:\Program Files\MATLAB\R2016b\extern\examples\mex\yprime.c'
A successful installation will show the following message:
MEX completed successfully.
Finally, you can test your installation by typing yprime(1,1:4). The answer would be:
ans = 2.0000 8.9685 4.0000 -1.0947
Why so many steps? If you have Matlab 2016 or higher, just do:
Download mingw and install to a folder without spaces (ie. not into "Program Files")
Add the MW_MINGW64_LOC environment variable pointing to the install folder (the exact same thing you typed into the installer)
Restart your PC
Open MATLAB and type mex -setup into the console. It should say "configured to use MinGW"
Run/compile your MATLAB program
I've tested these on a new Windows 10 PC and it works!
This one works on Matlab 2012b under Windows 8:
https://github.com/DynareTeam/dynare/blob/master/windows/mexopts-win64.bat
Modify cgwin directory or replace it with mingw directory if used. You can also echange the compiler-exe if you switch to a 64 bit version.
In Windows 64 bit with R2011a it worked with http://tdm-gcc.tdragon.net/ and http://gnumex.sourceforge.net/ but I have to change maxopt.bat line entry GM_ADD_LIBS as follows:
rem Add path to where dlls are:
set DLL_PATH="C:\Program Files\MATLAB\R2011a\bin\win64"
rem Add every dll needed:
set GM_ADD_LIBS=%DLL_PATH%\libmx.dll %DLL_PATH%\libmex.dll %DLL_PATH%\libmat.dll
It took me a long time to get to this point, good luck.
I originally thought this sounded like a form of torture, but based on the above answer by #user10171136 I actually found it pretty straightforward to cross-compile for Windows mex from Fedora Linux. Fedora has mingw and mingw64 packages, so:
sudo yum install mingw64-gcc mingw64-gcc-c++
Copy over from a Windows Matlab install both the extern/include and bin/win64 directories (actually you probably only need a subset of the headers and a small subset of the dlls; libmat.dll libmex.dll libmx.dll might be all you need. I put these two directories into a new R2010a-w64 directory under my existing Linux MATLAB directory; change the below commands appropriate for where you stashed the Windows headers and libs.
There was one problem I ran into, which is that char16_t was needed in matrix.h and wasn't defined. I guess matrix.h forgot to include uchar.h? I worked around with an -include directive; see below.
x86_64-w64-mingw32-gcc -m64 -shared -include uchar.h -I/opt/MATLAB/R2010a-w64/extern/include -DMATLAB_MEX_FILE -L/opt/MATLAB/R2010a-w64/bin/win64 -o bla.mexw64 bla.c -lmx -lmex
(You may need additional libraries for linking, e.g. -lmat -leng -lm, etc.)
This successfully generates a mex file that is executable under Windows Matlab for my setup. So far I've only tested this with pretty simple C programs.
Interested to hear if this sounds reasonable; I don't have much experience with cross-compiling.
On linux, if you type mex -setup, you can choose the compiler.
On windows, you should try to install lcc, you can do so for instance by installing Microsoft Visual Studio Express, which is free.

Cannot find lg2c

I'm trying to create mex for matlab from some cpp and fortran files. They all compile well and creates the .obj file. But during linking I get the error lg2c not found.
I have matlab 2007 installed in win vista. I also have mingw and gnumex installed.
The mex -setup in matlab returns 2 compilers lcc and VS 2003
I'm using G77 fortran compiler
Followed instructions in http://www.cs.ubc.ca/~pcarbo/Compile_LBFGSB_on_Windows.txt
Fortran programs compiled with g77 (as provided by GCC <= 3.4.6) need to link with libg2c. Fortran programs compiled with gfortran (as provided by GCC >= 4.0.0) need to link with libgfortran. In any case, the compiler driver (whether g77 or gfortran) ought to do that for you.
Now, the question is: is there a reference to libg2c in the Matlab-provided files. If so, you have no choice but to provide libg2c. You can find a download there.