What is the reasoning behind maintaining doubly linked lists of PCB's(process control blocks) in an OS for scheduling. I have seen this mentioned multiple times for Real time operating systems.
I would ideally go for a circular singly linked list , so that you could do a round robin and reach back to 1st task after looking to all. You could also sort it by priority...
But, why a doubly linked list?
You have made the assumption that you would always want to start at the head, and work towards the end of the list. This may not be true. Say you are swapping one process out (eg it is pending on a sempahore). You already have the current process control block, so it makes sense to start using the information you have rather than iterate through the entire list.
Because the PCB has a reference to both the previous and the next, you can cut that node out of the running-list, and move to a pended-list, or from a pended-list back into a ready-to-run list etc, without having to iterate all the way through.
Related
Image to illustrate point of freezing Context:
Creating a scalable model for a production line to increase Man Machine Optimization ratio. Will be scaling the model for an operator (resource) to work on multiple machines (of the same type). During the process flow at a machine, the operator will be seized and released multiple times for different taskings.
Problem:
Entire process freezes when the operator is being seized at multiple seize blocks concurrently.
Thoughts:
Is there a way to create a list where taskings are added in the event the resource is currently seized. Resource will then work on the list of taskings whenever it becomes idle. Any other methods to resolve this issue is also appreciated!
If this is going to become a complex model, you may want to consider using a pure agent-based approach.
Your resource has a LinkedList of JobRequest agents that are created and send by the machines when necessary. They are sorted by some priority.
The resource then simply does one JobRequest after the next.
No ResourcePools or Seieze elements required.
This is often the more powerful and flexible approach as you are not bound to the process blocks anymore. But obviously, it needs good control and testing from you :)
Problem: Entire process freezes when the operator is being
seized at multiple seize blocks concurrently.
You need to explain your problem better: it is not possible to "seize the same operator at multiple seize blocks concurrently" (unless you are using a resource choice condition or similar to try to 'force' seizing of a particular resource --- even then, this is more accurately framed as 'I've set up resource choice conditions which mean I end up having no valid resources available').
What does your model "freezing" represent? For example, it could just be a natural consequence of having no resources available, especially if you have long delay times or are using Delay blocks with "Until stopDelay() is called" set --- i.e., you are relying on events elsewhere in your model to free agents (and seized resources) from blocks, which an incorrect model design might mean never happen in some circumstances. (If your model is "freezing" because of no resources being available, it should 'unfreeze' when one does.)
During the process flow at a machine, the operator will be
seized and released multiple times for different taskings.
You can just do this bit by breaking down the actions at a machine into a number of Seize/Delay/Release actions with different characteristics (or a process flow that loops around a set of these driven by some data if you want it to be more flexible / data-driven).
I am trying to model a certain behaviour, where couple of activities in differents swimlanes supposed to be processed in a loop. Now BPMN uses tokens to ilustrate the flow and paths taken. I wonder how such tokens work in case of loops. Does every activity iteration creates a token which consequently travel through the connected activities?
E.g. Let's say Activity1 will be performed in a loop 10 times. Will that create 10 tokens where each will travel through the remaining activities of the process? Such behaviour would be undesirable, however if I am not mistaken multi-instance activities work that way.
The only solution on my mind which would comply with BPMN specification would be to create a Call activity for the whole block of activities and then run the Call activity in a loop.
Can anyone clarify for me the use of loops and multi-instances in BPMN from the view of tokens?
Thank you in advance!
Based upon my reading of the documentation: https://www.omg.org/spec/BPMN/2.0/PDF The answer from #qwerty_so does not seem to conform to the standard, although in part this seems to be because the question also seems imprecise or at least underspecified.
A token (see glossary) is simply an imaginary object that represents the flow unit in the process diagram. There are at least three different types of loops specified in the standard, which suggest different implications for the flow unit.
Sections 13.2.6 and 12.2.7 describe Loop Activity and Multiple Instance Activities respectively. While the latter, on its face, might not seem like a loop, the standard defines attributes of the activity that suggest otherwise including: MultipleInstanceLoopCharacteristics and ExpressionloopCardinality.
In the former case, it seems that the operational semantics suggest a single flow unit that repeats multiple times according to some policy or even unbounded.
In the latter case, the activity has "multiple instances spawned," including a parallel variant.
That multiple instances can flow forward in parallel, on its face, suggests that the system must at least allow for the possibility of spawning multiple tokens (or conceptually splitting the original token) to support multiple threads proceeding simultaneously along different paths.
That said, the Loop Activity (13.2.6) appears to support the OP's desired semantics.
I've been using Spec Explorer for about a month now on a big project,
it´s been going well besides one thing
Sometimes new states are being generated instead of looping, for example
- Create object, new state
- Do something with object, new state
- Do something that changes nothing (trying to create same object, does not change any state variables) here I get a new state instead of looping
Most of the times it loops, like it should, sometimes not, and there is absolutely no difference in the state comparison view except for the two top lines that only covers the description as to how the state came to be.
Anyone had similar problems or knows what´s going on?
There are several possible reasons.
But in most cases the problem is: scenarios introduce control states.
Here the deepest explanation you can get on "How are identical states identified?"
"Ideally, we would identify two states when they
(a) have the same state contents, and
(b) have the same future behavior.
The reason why (a) is not enough is that enabled actions don’t depend on the state contents only, but also potentially on scenarios applied in a Cord script. Scenarios introduce control states.
The problem here is that checking (b) is not feasible in practice, as it would imply looking ahead all paths stemming from a state.
So we rely on a heuristic, consisting on identifying states that not only have the same contents, but are also produced in the same step of a scenario.
So two states are equivalent if they contain the same data AND can perform the same actions.
For example, in a scenario such as A; A; B*, we have three states, all with the same (empty) contents.
When we compose this scenario in parallel with a model program, states corresponding to these three states will not be merged, regardless of their contents.
As a consequence, when you are comparing two states to understand why they are not merged, you should not just look at the values of their variables (data state), but also at the state description, which provides the control state.
States which have been generated by different machines using Spec Explorer heuristic cannot safely considered by a single state.
As said, this is just a safe heuristic. So there’s no guarantee that two conceptually-equivalent states will always be merged;
but two states that are not conceptually equivalent should never be merged."
I read Deprecating the Observer Pattern with Scala.React and found reactive programming very interesting.
But there is a point I can't figure out: the author described the signals as the nodes in a DAG(Directed acyclic graph). Then what if you have two signals(or event sources, or models, w/e) depending on each other? i.e. the 'two-way binding', like a model and a view in web front-end programming.
Sometimes it's just inevitable because the user can change view, and the back-end(asynchronous request, for example) can change model, and you hope the other side to reflect the change immediately.
The loop dependencies in a reactive programming language can be handled with a variety of semantics. The one that appears to have been chosen in scala.React is that of synchronous reactive languages and specifically that of Esterel. You can have a good explanation of this semantics and its alternatives in the paper "The synchronous languages 12 years later" by Benveniste, A. ; Caspi, P. ; Edwards, S.A. ; Halbwachs, N. ; Le Guernic, P. ; de Simone, R. and available at http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=1173191&tag=1 or http://virtualhost.cs.columbia.edu/~sedwards/papers/benveniste2003synchronous.pdf.
Replying #Matt Carkci here, because a comment wouldn't suffice
In the paper section 7.1 Change Propagation you have
Our change propagation implementation uses a push-based approach based on a topologically ordered dependency graph. When a propagation turn starts, the propagator puts all nodes that have been invalidated since the last turn into a priority queue which is sorted according to the topological order, briefly level, of the nodes. The propagator dequeues the node on the lowest level and validates it, potentially changing its state and putting its dependent nodes, which are on greater levels, on the queue. The propagator repeats this step until the queue is empty, always keeping track of the current level, which becomes important for level mismatches below. For correctly ordered graphs, this process monotonically proceeds to greater levels, thus ensuring data consistency, i.e., the absence of glitches.
and later at section 7.6 Level Mismatch
We therefore need to prepare for an opaque node n to access another node that is on a higher topological level. Every node that is read from during n’s evaluation, first checks whether the current propagation level which is maintained by the propagator is greater than the node’s level. If it is, it proceed as usual, otherwise it throws a level mismatch exception containing a reference to itself, which is caught only in the main propagation loop. The propagator then hoists n by first changing its level to a level above the node which threw the exception, reinserting n into the propagation queue (since it’s level has changed) for later evaluation in the same turn and then transitively hoisting all of n’s dependents.
While there's no mention about any topological constraint (cyclic vs acyclic), something is not clear. (at least to me)
First arises the question of how is the topological order defined.
And then the implementation suggests that mutually dependent nodes would loop forever in the evaluation through the exception mechanism explained above.
What do you think?
After scanning the paper, I can't find where they mention that it must be acyclic. There's nothing stopping you from creating cyclic graphs in dataflow/reactive programming. Acyclic graphs only allow you to create Pipeline Dataflow (e.g. Unix command line pipes).
Feedback and cycles are a very powerful mechanism in dataflow. Without them you are restricted to the types of programs you can create. Take a look at Flow-Based Programming - Loop-Type Networks.
Edit after second post by pagoda_5b
One statement in the paper made me take notice...
For correctly ordered graphs, this process
monotonically proceeds to greater levels, thus ensuring data
consistency, i.e., the absence of glitches.
To me that says that loops are not allowed within the Scala.React framework. A cycle between two nodes would seem to cause the system to continually try to raise the level of both nodes forever.
But that doesn't mean that you have to encode the loops within their framework. It could be possible to have have one path from the item you want to observe and then another, separate, path back to the GUI.
To me, it always seems that too much emphasis is placed on a programming system completing and giving one answer. Loops make it difficult to determine when to terminate. Libraries that use the term "reactive" tend to subscribe to this thought process. But that is just a result of the Von Neumann architecture of computers... a focus of solving an equation and returning the answer. Libraries that shy away from loops seem to be worried about program termination.
Dataflow doesn't require a program to have one right answer or ever terminate. The answer is the answer at this moment of time due to the inputs at this moment. Feedback and loops are expected if not required. A dataflow system is basically just a big loop that constantly passes data between nodes. To terminate it, you just stop it.
Dataflow doesn't have to be so complicated. It is just a very different way to think about programming. I suggest you look at J. Paul Morison's book "Flow Based Programming" for a field tested version of dataflow or my book (once it's done).
Check your MVC knowledge. The view doesn't update the model, so it won't send signals to it. The controller updates the model. For a C/F converter, you would have two controllers (one for the F control, on for the C control). Both controllers would send signals to a single model (which stores the only real temperature, Kelvin, in a lossless format). The model sends signals to two separate views (one for C view, one for F view). No cycles.
Based on the answer from #pagoda_5b, I'd say that you are likely allowed to have cycles (7.6 should handle it, at the cost of performance) but you must guarantee that there is no infinite regress. For example, you could have the controllers also receive signals from the model, as long as you guaranteed that receipt of said signal never caused a signal to be sent back to the model.
I think the above is a good description, but it uses the word "signal" in a non-FRP style. "Signals" in the above are really messages. If the description in 7.1 is correct and complete, loops in the signal graph would always cause infinite regress as processing the dependents of a node would cause the node to be processed and vice-versa, ad inf.
As #Matt Carkci said, there are FRP frameworks that allow loops, at least to a limited extent. They will either not be push-based, use non-strictness in interesting ways, enforce monotonicity, or introduce "artificial" delays so that when the signal graph is expanded on the temporal dimension (turning it into a value graph) the cycles disappear.
I have an entity in my domain that represent a city electrical network. Actually my model is an entity with a List that contains breakers, transformers, lines.
The network change every time a breaker is opened/closed, user can change connections etc...
In all examples of CQRS the EventStore is queried with Version and aggregateId.
Do you think I have to implement events only for the "network" aggregate or also for every "Connectable" item?
In this case when I have to replay all events to get the "actual" status (based on a date) I can have near 10000-20000 events to process.
An Event modify one property or I need an Event that modify an object (containing all properties of the object)?
Theres always an exception to the rule but I think you need to have an event for every command handled in your domain. You can get around the problem of processing so many events by making use of Snapshots.
http://thinkbeforecoding.com/post/2010/02/25/Event-Sourcing-and-CQRS-Snapshots
I assume you mean currently your "connectable items" are part of the "network" aggregate and you are asking if they should be their own aggregate? That really depends on the nature of your system and problem and is more of a DDD issue than simple a CQRS one. However if the nature of your changes is typically to operate on the items independently of one another then then should probably be aggregate roots themselves. Regardless in order to answer that question we would need to know much more about the system you are modeling.
As for the challenge of replaying thousands of events, you certainly do not have to replay all your events for each command. Sure snapshotting is an option, but even better is caching the aggregate root objects in memory after they are first loaded to ensure that you do not have to source from events with each command (unless the system crashes, in which case you can rely on snapshots for quicker recovery though you may not need them with caching since you only pay the penalty of loading once).
Now if you are distributing this system across multiple hosts or threads there are some other issues to consider but I think that discussion is best left for another question or the forums.
Finally you asked (I think) can an event modify more than one property of the state of an object? Yes if that is what makes sense based on what that event represents. The idea of an event is simply that it represents a state change in the aggregate, however these events should also represent concepts that make sense to the business.
I hope that helps.