This is a space and time dependant partial differential equation. I have attached the image containing equation and initial and boundary conditions. I wish to get the code to solve this equation numerically using finite volume method.
Also if the first two terms are not there, than one can say parabolic or elliptic equation, here the additional two C_A terms including exponential dependence and the last boundary conditions which is both the functions of time and space makes it complicated.
Thanks
Related
My task is to model a certain physical problem and use matlab to solve it's differential equations. I made the model but it seems far more complex than what I've learned so far so I have no idea how to solve this.
The black color means it's a constant
I assume that by "solve" you seek a closed form solution of the form x(t) = ..., z(t) = ... Unforunately, it's very likely you cannot solve this system of differential equations. Only very specific canonical systems actually have a closed-form solution, and they are the most simple (few terms and dependent variables). See Wikipedia's entry for Ordinary Differential Equations, in particular the section Summary of exact solutions.
Nevertheless, the procedure for attempting to solve with Matlab's Symbolic Math Toolbox is described here.
If instead you were asking for numerical integration, then I will give you some pointers, but you must carry out the math:
Convert the second order system to a first order system by using a substitution w(t) = dx/dt, allowing you to replace the d2x/dt2 term by dw/dt. Example here.
Read the documentation for ode15i and implement your transformed model as an implicit differential equation system.
N.B. You must supply numerical values for your constants.
I am relatively new to writing my own code for Matlab though I have used the program a decent amount. Right now I am attempting to code a series of first order non-linear differential equations. They are all in one of two forms like the equations here:
Eventually I will need a set of 30 differential equations.
What I was hoping to do was create a function that could make the differential equation for each component of a certain form, combine them into a single system (essentially a matrix with 1 column and a row for each component), and then solve using a Matlab solver like ODE45, the dsolve function, or something like that to solve the system.
I have not yet found a way to make a function set up this large of a system that works with either dsolve or ODE45. The results always either gave me an empty sym or an error that the initial conditions were not compatible with the system or some other error. So what I am wondering is if there is another way to go about setting up a system that is this large and has nonlinear differential equations.
I do not want someone else's code; I just want an idea for how to go about setting this up in Matlab because nothing I have tried has worked so far.
I'm using the MATLAB's function 'pdepe' to solve a problem with some partial differential equations, a parabolic one.
I need to know the kind of numerical method that function uses, 'cause I have to notify this in a report.
The description of the function in MathWorks is "Solve initial-boundary value problems for systems of parabolic and elliptic PDEs in one space variable and time". Is it a finite difference method?
Thanks for helping me.
Taken from the Matlab 2016b documentation for pdepe:
The time integration is done with ode15s. pdepe exploits the
capabilities of ode15s for solving the differential-algebraic
equations that arise when Equation 1-3 contains elliptic equations,
and for handling Jacobians with a specified sparsity pattern.
Also, from the ode15s documentation:
ode15s is a variable-step, variable-order (VSVO) solver based on the
numerical differentiation formulas (NDFs) of orders 1 to 5.
Optionally, it can use the backward differentiation formulas (BDFs,
also known as Gear's method) that are usually less efficient
As indicated by Alessandro Trigilio, ode15s is used to advance the solution forward in time. Exactly what the function is advancing in time is a semi-discrete, second-order Galerkin formulation for non-singular problems or a semi-discrete, second-order Petrov-Galerkin formulation for singular problems (polar or spherical meshes that include the origin). As such, the spatial discretization is finite element in nature.
I'm basically trying to model the motion of a compound double pendulum, the lagrange equations produce this pair of coupled differential equations: Equations of motion for a compound pendulum.
I wish to apply ode45 to model the behavior over time. I understand that they need to be reduced into 4 first order equations, but I'm baffled over the syntax/rearrangement that may or may not be required due to the coupling.
I have a polynomial of order N (where N is even). This polynomial is equal to minus infinity for x minus/plus infinity (thus it has a maximum). What I am doing right now is taking the derivative of the polynomial by using polyder then finding the roots of the N-1 th order polynomial by using the roots function in Matlab which returns N-1 solutions. Then I am picking the real root that really maximizes the polynomial. The problem is that I am updating my polynomial a lot and at each time step I am using the above procedure to find the maximizer. Therefore, the roots function takes too much of a computation time making my application slow. Is there a way either in Matlab or a proposed algorithm that does this maximization in a computationally efficient fashion( i.e. just finding one solution instead of N-1 solutions)? Thanks.
Edit: I would also like to know whether there is a routine in Matlab that only returns the real roots instead of
roots which returns all real/complex ones.
I think that you are probably out of luck. If the coefficients of the polynomial change at every time step in an arbitrary fashion, then ultimately you are faced with a distinct and unrelated optimisation problem at every stage. There is insufficient information available to consider calculating just a subset of roots of the derivative polynomial - how could you know which derivative root provides the maximum stationary point of the polynomial without comparing the function value at ALL of the derivative roots?? If your polynomial coefficients were being perturbed at each step by only a (bounded) small amount or in a predictable manner, then it is conceivable that you would be able to try something iterative to refine the solution at each step (for example something crude such as using your previous roots as starting point of a new set of newton iterations to identify the updated derivative roots), but the question does not suggest that this is in fact the case so I am just guessing. I could be completely wrong here but you might just be out of luck in getting something faster unless you can provide more information of have some kind of relationship between the polynomials generated at each step.
There is a file exchange submission by Steve Morris which finds all real roots of functions on a given interval. It does so by interpolating the polynomial by a Chebychev polynomial, and finding its roots.
You can modify the eig evaluation of the companion matrix in there, to eigs. This allows you to find only one (or a few) roots and save time (there's a fair chance it's also possible to compute the roots or extrema of a Chebychev analytically, although I could not find a good reference for that (or even a bad one for that matter...)).
Another attempt that you can make in speeding things up, is to note that polyder does nothing more than
Pprime = (numel(P)-1:-1:1) .* P(1:end-1);
for your polynomial P. Also, roots does nothing more than find the eigenvalues of the companion matrix, so you could find these eigenvalues yourself, which prevents a call to roots. This could both be beneficial, because calls to non-builtin functions inside a loop prevent Matlab's JIT compiler from translating the loop to machine language. This could otherwise give you a large speed gain (factors of 100 or more are not uncommon).