How to add a vertices to specified graph of rexsterserver (titan/cassandra)? - titan

I am using rexster server with Titan cassandra. and all are installed in my local host. me configure my rexster.xml to create a specific graph.
<graph>
<graph-name>empgraph</graph-name>
<graph-type>tinkergraph</graph-type>`enter code here`
<graph-mock-tx>true</graph-mock-tx>
<extensions>
<allows>
<allow>tp:gremlin</allow>
</allows>
</extensions>
</graph>
And I want to add edges and vertices's to that my new graph with python bulbs. I wrote below code to add
from bulbs.rexster import Graph, Config
config = Config('http://localhost:8182/graphs/emptygraph';)
g = Graph(config)
but I am getting error ... if I add below data that will effect to default graph only ... that code not showing any effect on empgraph ... what i have to do to add a data to my newly created empgraph ?
from bulbs.config import Config, DEBUG
from bulbs.rexster import Graph
config = Config('http://localhost:8182/graphs/empgraph';)
g = Graph()
class inser_class():
po = g.vertices.create(name="po")
pr = g.vertices.create(name="pr")
tanuja = g.vertices.create(name="tanuja")
g.edges.create(pr, "knows", tanuja)
in above code i mention empgraph but that data added to the default(emptygraph).

Related

CSV Feeders for gatling 3

I am using Gatling 3. I have a csv feeder with just one column titled accountIds. I need to pass this in the body of my POST request as JSON. I have tried a lot of different syntax but nothing seems to be working. I can also not print what is actually being sent in the body. It works if I remove the "$accountIds" and use an actual value instead. Below is my code:
val searchFeeder = csv("C://data/accountids.csv").random
val scn1 = scenario("Scenario 1")
.feed(searchFeeder)
.exec(http("Search")
.post("/v3/accounts/")
.body(StringBody("""{"accountIds": "${accountIds}"}""")).asJson)
setUp(scn1.inject(atOnceUsers(10)).protocols(httpConf))
Have you enabled trace level in logback.xml to see the details of post request?
Also, can you confirm if location you have mentioned "C://data/accountids.csv" is the right one. Generally, data folder resides in project location and within project you can access the data file as:
val searchFeeder = csv("data/stack.csv").random
I just created sample script and enabled logging.I am able to see that accountId is getting passed:
package basicpackage
import io.gatling.core.Predef._
import io.gatling.http.Predef._
import io.gatling.core.scenario.Simulation
class StackFeeder extends Simulation {
val httpConf=http.baseUrl("http://example.com")
val searchFeeder = csv("data/stack.csv").random
val scn1 = scenario("Scenario 1")
.feed(searchFeeder)
.exec(http("Search")
.post("/v3/accounts/")
.body(StringBody("""{"accountIds": "${accountIds}"}""")).asJson)
setUp(scn1.inject(atOnceUsers(1)).protocols(httpConf))
csv file location

Deploying Keras model to Google Cloud ML for serving predictions

I need to understand how to deploy models on Google Cloud ML. My first task is to deploy a very simple text classifier on the service. I do it in the following steps (could perhaps be shortened to fewer steps, if so, feel free to let me know):
Define the model using Keras and export to YAML
Load up YAML and export as a Tensorflow SavedModel
Upload model to Google Cloud Storage
Deploy model from storage to Google Cloud ML
Set the upload model version as default on the models website.
Run model with a sample input
I've finally made step 1-5 work, but now I get this strange error seen below when running the model. Can anyone help? Details on the steps is below. Hopefully, it can also help others that are stuck on one of the previous steps. My model works fine locally.
I've seen Deploying Keras Models via Google Cloud ML and Export a basic Tensorflow model to Google Cloud ML, but they seem to be stuck on other steps of the process.
Error
Prediction failed: Exception during model execution: AbortionError(code=StatusCode.INVALID_ARGUMENT, details="In[0] is not a matrix
[[Node: MatMul = MatMul[T=DT_FLOAT, _output_shapes=[[-1,64]], transpose_a=false, transpose_b=false, _device="/job:localhost/replica:0/task:0/cpu:0"](Mean, softmax_W/read)]]")
Step 1
# import necessary classes from Keras..
model_input = Input(shape=(maxlen,), dtype='int32')
embed = Embedding(input_dim=nb_tokens,
output_dim=256,
mask_zero=False,
input_length=maxlen,
name='embedding')
x = embed(model_input)
x = GlobalAveragePooling1D()(x)
outputs = [Dense(nb_classes, activation='softmax', name='softmax')(x)]
model = Model(input=[model_input], output=outputs, name="fasttext")
# export to YAML..
Step 2
from __future__ import print_function
import sys
import os
import tensorflow as tf
from tensorflow.contrib.session_bundle import exporter
import keras
from keras import backend as K
from keras.models import model_from_config, model_from_yaml
from optparse import OptionParser
EXPORT_VERSION = 1 # for us to keep track of different model versions (integer)
def export_model(model_def, model_weights, export_path):
with tf.Session() as sess:
init_op = tf.global_variables_initializer()
sess.run(init_op)
K.set_learning_phase(0) # all new operations will be in test mode from now on
yaml_file = open(model_def, 'r')
yaml_string = yaml_file.read()
yaml_file.close()
model = model_from_yaml(yaml_string)
# force initialization
model.compile(loss='categorical_crossentropy',
optimizer='adam')
Wsave = model.get_weights()
model.set_weights(Wsave)
# weights are not loaded as I'm just testing, not really deploying
# model.load_weights(model_weights)
print(model.input)
print(model.output)
pred_node_names = output_node_names = 'Softmax:0'
num_output = 1
export_path_base = export_path
export_path = os.path.join(
tf.compat.as_bytes(export_path_base),
tf.compat.as_bytes('initial'))
builder = tf.saved_model.builder.SavedModelBuilder(export_path)
# Build the signature_def_map.
x = model.input
y = model.output
values, indices = tf.nn.top_k(y, 5)
table = tf.contrib.lookup.index_to_string_table_from_tensor(tf.constant([str(i) for i in xrange(5)]))
prediction_classes = table.lookup(tf.to_int64(indices))
classification_inputs = tf.saved_model.utils.build_tensor_info(model.input)
classification_outputs_classes = tf.saved_model.utils.build_tensor_info(prediction_classes)
classification_outputs_scores = tf.saved_model.utils.build_tensor_info(values)
classification_signature = (
tf.saved_model.signature_def_utils.build_signature_def(inputs={tf.saved_model.signature_constants.CLASSIFY_INPUTS: classification_inputs},
outputs={tf.saved_model.signature_constants.CLASSIFY_OUTPUT_CLASSES: classification_outputs_classes, tf.saved_model.signature_constants.CLASSIFY_OUTPUT_SCORES: classification_outputs_scores},
method_name=tf.saved_model.signature_constants.CLASSIFY_METHOD_NAME))
tensor_info_x = tf.saved_model.utils.build_tensor_info(x)
tensor_info_y = tf.saved_model.utils.build_tensor_info(y)
prediction_signature = (tf.saved_model.signature_def_utils.build_signature_def(
inputs={'images': tensor_info_x},
outputs={'scores': tensor_info_y},
method_name=tf.saved_model.signature_constants.PREDICT_METHOD_NAME))
legacy_init_op = tf.group(tf.tables_initializer(), name='legacy_init_op')
builder.add_meta_graph_and_variables(
sess, [tf.saved_model.tag_constants.SERVING],
signature_def_map={'predict_images': prediction_signature,
tf.saved_model.signature_constants.DEFAULT_SERVING_SIGNATURE_DEF_KEY: classification_signature,},
legacy_init_op=legacy_init_op)
builder.save()
print('Done exporting!')
raise SystemExit
if __name__ == '__main__':
usage = "usage: %prog [options] arg"
parser = OptionParser(usage)
(options, args) = parser.parse_args()
if len(args) < 3:
raise ValueError("Too few arguments!")
model_def = args[0]
model_weights = args[1]
export_path = args[2]
export_model(model_def, model_weights, export_path)
Step 3
gsutil cp -r fasttext_cloud/ gs://quiet-notch-xyz.appspot.com
Step 4
from __future__ import print_function
from oauth2client.client import GoogleCredentials
from googleapiclient import discovery
from googleapiclient import errors
import time
projectID = 'projects/{}'.format('quiet-notch-xyz')
modelName = 'fasttext'
modelID = '{}/models/{}'.format(projectID, modelName)
versionName = 'Initial'
versionDescription = 'Initial release.'
trainedModelLocation = 'gs://quiet-notch-xyz.appspot.com/fasttext/'
credentials = GoogleCredentials.get_application_default()
ml = discovery.build('ml', 'v1', credentials=credentials)
# Create a dictionary with the fields from the request body.
requestDict = {'name': modelName, 'description': 'Online predictions.'}
# Create a request to call projects.models.create.
request = ml.projects().models().create(parent=projectID, body=requestDict)
# Make the call.
try:
response = request.execute()
except errors.HttpError as err:
# Something went wrong, print out some information.
print('There was an error creating the model.' +
' Check the details:')
print(err._get_reason())
# Clear the response for next time.
response = None
raise
time.sleep(10)
requestDict = {'name': versionName,
'description': versionDescription,
'deploymentUri': trainedModelLocation}
# Create a request to call projects.models.versions.create
request = ml.projects().models().versions().create(parent=modelID,
body=requestDict)
# Make the call.
try:
print("Creating model setup..", end=' ')
response = request.execute()
# Get the operation name.
operationID = response['name']
print('Done.')
except errors.HttpError as err:
# Something went wrong, print out some information.
print('There was an error creating the version.' +
' Check the details:')
print(err._get_reason())
raise
done = False
request = ml.projects().operations().get(name=operationID)
print("Adding model from storage..", end=' ')
while (not done):
response = None
# Wait for 10000 milliseconds.
time.sleep(10)
# Make the next call.
try:
response = request.execute()
# Check for finish.
done = True # response.get('done', False)
except errors.HttpError as err:
# Something went wrong, print out some information.
print('There was an error getting the operation.' +
'Check the details:')
print(err._get_reason())
done = True
raise
print("Done.")
Step 5
Use website.
Step 6
def predict_json(instances, project='quiet-notch-xyz', model='fasttext', version=None):
"""Send json data to a deployed model for prediction.
Args:
project (str): project where the Cloud ML Engine Model is deployed.
model (str): model name.
instances ([Mapping[str: Any]]): Keys should be the names of Tensors
your deployed model expects as inputs. Values should be datatypes
convertible to Tensors, or (potentially nested) lists of datatypes
convertible to tensors.
version: str, version of the model to target.
Returns:
Mapping[str: any]: dictionary of prediction results defined by the
model.
"""
# Create the ML Engine service object.
# To authenticate set the environment variable
# GOOGLE_APPLICATION_CREDENTIALS=<path_to_service_account_file>
service = googleapiclient.discovery.build('ml', 'v1')
name = 'projects/{}/models/{}'.format(project, model)
if version is not None:
name += '/versions/{}'.format(version)
response = service.projects().predict(
name=name,
body={'instances': instances}
).execute()
if 'error' in response:
raise RuntimeError(response['error'])
return response['predictions']
Then run function with test input: predict_json({'inputs':[[18, 87, 13, 589, 0]]})
There is now a sample demonstrating the use of Keras on CloudML engine, including prediction. You can find the sample here:
https://github.com/GoogleCloudPlatform/cloudml-samples/tree/master/census/keras
I would suggest comparing your code to that code.
Some additional suggestions that will still be relevant:
CloudML Engine currently only supports using a single signature (the default signature). Looking at your code, I think prediction_signature is more likely to lead to success, but you haven't made that the default signature. I suggest the following:
builder.add_meta_graph_and_variables(
sess, [tf.saved_model.tag_constants.SERVING],
signature_def_map={tf.saved_model.signature_constants.DEFAULT_SERVING_SIGNATURE_DEF_KEY: prediction_signature,},
legacy_init_op=legacy_init_op)
If you are deploying to the service, then you would invoke prediction like so:
predict_json({'images':[[18, 87, 13, 589, 0]]})
If you are testing locally using gcloud ml-engine local predict --json-instances the input data is slightly different (matches that of the batch prediction service). Each newline-separated line looks like this (showing a file with two lines):
{'images':[[18, 87, 13, 589, 0]]}
{'images':[[21, 85, 13, 100, 1]]}
I don't actually know enough about the shape of model.x to ensure the data being sent is correct for your model.
By way of explanation, it may be insightful to consider the difference between the Classification and Prediction methods in SavedModel. One difference is that, when using tensorflow_serving, which is based on gRPC, which is strongly typed, Classification provides a strongly-typed signature that most classifiers can use. Then you can reuse the same client on any classifier.
That's not overly useful when using JSON since JSON isn't strongly typed.
One other difference is that, when using tensorflow_serving, Prediction accepts column-based inputs (a map from feature name to every value for that feature in the whole batch) whereas Classification accepts row based inputs (each input instance/example is a row).
CloudML abstracts that away a bit and always requires row-based inputs (a list of instances). We even though we only officially support Prediction, but Classification should work as well.

How to automatically update charts linked to Google Sheets?

I have a Google Slides presentation with charts that are linked to a specific Google Sheets Spreadsheet.
As there are many charts in the presentation, I'm looking for a way to update all these linked charts automatically, or at least all of them at once.
What is the best way to do this?
You can add a custom function to a dropdown menu in the Slides UI with the following script. This gets the slides from the current presentation, loops through them, gets any charts in each slides and refreshes (updates) them.
function onOpen() {
var ui = SlidesApp.getUi();
ui.createMenu('Custom Menu')
.addItem('Batch Update Charts', 'batchUpdate')
.addToUi();
}
function batchUpdate(){
var gotSlides = SlidesApp.getActivePresentation().getSlides();
for (var i = 0; i < gotSlides.length; i++) {
var slide = gotSlides[i];
var sheetsCharts = slide.getSheetsCharts();
for (var k = 0; k < sheetsCharts.length; k++) {
var shChart = sheetsCharts[k];
shChart.refresh();
}
}
}
Note: The functionality to update/refresh linked Slides doesn't appear to exist at the time of this response.
You can find it in official documentation about API (for different lang).
https://developers.google.com/slides/how-tos/add-chart#refreshing_a_chart
You need to write a script for this and run it by schedule or manually.
I have found my own code that worked great.
from __future__ import print_function
import httplib2
import os
from apiclient import discovery
from oauth2client import client
from oauth2client import tools
from oauth2client.file import Storage
try:
import argparse
flags = argparse.ArgumentParser(parents=[tools.argparser]).parse_args()
except ImportError:
flags = None
# If modifying these scopes, delete your previously saved credentials
# at ~/.credentials/slides.googleapis.com-python-quickstart.json
SCOPES = 'https://www.googleapis.com/auth/drive'
CLIENT_SECRET_FILE = 'client_secret.json'
APPLICATION_NAME = 'Google Slides API Python Quickstart'
def get_credentials():
"""Gets valid user credentials from storage.
If nothing has been stored, or if the stored credentials are invalid,
the OAuth2 flow is completed to obtain the new credentials.
Returns:
Credentials, the obtained credential.
"""
home_dir = os.path.expanduser('~')
credential_dir = os.path.join(home_dir, '.credentials')
if not os.path.exists(credential_dir):
os.makedirs(credential_dir)
credential_path = os.path.join(credential_dir,
'slides.googleapis.com-python-quickstart.json')
store = Storage(credential_path)
credentials = store.get()
if not credentials or credentials.invalid:
flow = client.flow_from_clientsecrets(CLIENT_SECRET_FILE, SCOPES)
flow.user_agent = APPLICATION_NAME
if flags:
credentials = tools.run_flow(flow, store, flags)
else: # Needed only for compatibility with Python 2.6
credentials = tools.run(flow, store)
print('Storing credentials to ' + credential_path)
return credentials
def main():
"""Shows basic usage of the Slides API.
Creates a Slides API service object and prints the number of slides and
elements in a sample presentation:
"""
credentials = get_credentials()
http = credentials.authorize(httplib2.Http())
service = discovery.build('slides', 'v1', http=http)
# Here past your presentation id
presentationId = '1Owma9l9Z0Xjm1OPp-fcchdcxc1ImBPY2j9QH1LBDxtk'
presentation = service.presentations().get(
presentationId=presentationId).execute()
slides = presentation.get('slides')
print ('The presentation contains {} slides:'.format(len(slides)))
for slide in slides:
for element in slide['pageElements']:
presentation_chart_id = element['objectId']
# Execute the request.
try:
requests = [{'refreshSheetsChart': {'objectId': presentation_chart_id}}]
body = {'requests': requests}
#print(element)
requests = service.presentations().batchUpdate(
presentationId=presentationId, body=body).execute()
print('Refreshed a linked Sheets chart with ID: {0}'.format(presentation_chart_id))
except Exception:
pass
if __name__ == '__main__':
main()
Latest update: There is now an option in Slides's Tools drop-down menu to see all Linked Objects; the menu that appears has the option at the bottom to "Update all".

Using append command to update line chart in Lightning server

I want to visualize some streaming data using local Lightning server. I created a simple Scala test, which created a line chart that I can access at http://localhost:3000. The problem is that when I use viz.append(newdata) in order to update the existing line chart, this new data is not sent to the server and the graphic remains the same. If, however, I do lgn.lineStreaming(Array(Array(1.0)), then the new line chart is created.
So, what's the problem with updating the streaming line chart in Lightning?
import org.viz.lightning._
var viz: Visualization = _
//...
val lgn = Lightning(host="http://localhost:3000")
lgn.createSession("streamingtest")
// initialization
val series = Array.fill(1)(Array.fill(1)(r.nextInt(1)))
viz = lgn.lineStreaming(series)
// ...
// adding new data (THIS DATA IS NOT SENT TO THE SERVER)
val newdata: Map[String, Any] = Map("1" -> 1.0)
viz.append(newdata)

Enterprise Library Fluent API and Rolling Log Files Not Rolling

I am using the Fluent API to handle various configuration options for Logging using EntLib.
I am building up the loggingConfiguration section manually in code. It seems to work great except that the RollingFlatFileTraceListener doesn't actually Roll the file. It will respect the size limit and cap the amount of data it writes to the file appropriately, but it doesn't not actually create a new file and continue the logs.
I've tested it with a sample app and the app.config and it seems to work. So I'm guess that I am missing something although every config option that seems like it needs is there.
Here is the basics of the code (with hard-coded values to show a config that doesn't seem to be working):
//Create the config builder for the Fluent API
var configBuilder = new ConfigurationSourceBuilder();
//Start building the logging config section
var logginConfigurationSection = new LoggingSettings("loggingConfiguration", true, "General");
logginConfigurationSection.RevertImpersonation = false;
var _rollingFileListener = new RollingFlatFileTraceListenerData("Rolling Flat File Trace Listener", "C:\\tracelog.log", "----------------------", "",
10, "MM/dd/yyyy", RollFileExistsBehavior.Increment,
RollInterval.Day, TraceOptions.None,
"Text Formatter", SourceLevels.All);
_rollingFileListener.MaxArchivedFiles = 2;
//Add trace listener to current config
logginConfigurationSection.TraceListeners.Add(_rollingFileListener);
//Configure the category source section of config for flat file
var _rollingFileCategorySource = new TraceSourceData("General", SourceLevels.All);
//Must be named exactly the same as the flat file trace listener above.
_rollingFileCategorySource.TraceListeners.Add(new TraceListenerReferenceData("Rolling Flat File Trace Listener"));
//Add category source information to current config
logginConfigurationSection.TraceSources.Add(_rollingFileCategorySource);
//Add the loggingConfiguration section to the config.
configBuilder.AddSection("loggingConfiguration", logginConfigurationSection);
//Required code to update the EntLib Configuration with settings set above.
var configSource = new DictionaryConfigurationSource();
configBuilder.UpdateConfigurationWithReplace(configSource);
//Set the Enterprise Library Container for the inner workings of EntLib to use when logging
EnterpriseLibraryContainer.Current = EnterpriseLibraryContainer.CreateDefaultContainer(configSource);
Any help would be appreciated!
Your timestamp pattern is wrong. It should be yyy-mm-dd instead of MM/dd/yyyy. The ‘/’ character is not supported.
Also, you could accomplish your objective by using the fluent configuration interface much easier. Here's how:
ConfigurationSourceBuilder formatBuilder = new ConfigurationSourceBuilder();
ConfigurationSourceBuilder builder = new ConfigurationSourceBuilder();
builder.ConfigureLogging().LogToCategoryNamed("General").
SendTo.
RollingFile("Rolling Flat File Trace Listener")
.CleanUpArchivedFilesWhenMoreThan(2).WhenRollFileExists(RollFileExistsBehavior.Increment)
.WithTraceOptions(TraceOptions.None)
.RollEvery(RollInterval.Minute)
.RollAfterSize(10)
.UseTimeStampPattern("yyyy-MM-dd")
.ToFile("C:\\logs\\Trace.log")
.FormatWith(new FormatterBuilder().TextFormatterNamed("textFormatter"));
var configSource = new DictionaryConfigurationSource();
builder.UpdateConfigurationWithReplace(configSource);
EnterpriseLibraryContainer.Current = EnterpriseLibraryContainer.CreateDefaultContainer(configSource);
var writer = EnterpriseLibraryContainer.Current.GetInstance<LogWriter>();
DateTime stopWritingTime = DateTime.Now.AddMinutes(10);
while (DateTime.Now < stopWritingTime)
{
writer.Write("test", "General");
}