I wrote a code for MCMC estimation in WinBUGS14. It passes the check model, load data, but gets stuck right after compile. It shows that the program is "not responding", and has been frozen by more than 1 hour.
What does this mean? Does it mean the program has bug? Or does it mean the estimation is just too complicated?
Many thanks!
Jun
Related
I've run into the following error message from Simulink:
The block 'xyz/If Action Normal/In1' has a discrete sample time that does not match the sample time 0 of the If block 'abc' controlling its execution
My solver configuration is variable step/auto, and the environment could be seen at the end of this post.
I tried a few methods:
try to locate the error by replacing/comment out blocks;
try to change the port driving if-action block;
try to remove all discrete blocks;
Any suggestion is highly appreciated.
This error is hidden behind a Matlab known bug. Basically, when I tried to add a rate transition to make the same time consistent. The system crashed.
The crash is because of a known Matlab bug. A zero-holder needs to be added following unit delay blocks. After this, I could add rate transit block without model crashing.
I'am trying to run real-life experiment for an application in Raspberry Pi, and I need to estimate or predicate the execution time for the application. in other words, before execution/ run the task i need to know how long (roughly) this task/app going to take to get the result back. I have identified several techniques and works that have been done before. but most of it are simulation work which doesn't work with real-life experiment. does anyone can help me with any idea or technique (No code). thank you in advance
Estimating the execution time of an application or function is going to be difficult in any context. You might want to look up the halting problem for some insight to why. It's impossible to determine whether a given program will finish executing, and therefore, you can't really tell how long a given program will take to finish executing.
For general computing, varying hardware capabilities of any given system will always have an effect on the execution time of a program. Raspberry Pi is a little more discrete than that, and therefore more predictable in that sense, but those specifications will not always be consistent across its various versions. That adds to the complexity of determining a run time.
Practically, the most reliable way to determine how long a process will take would be to just run it and time it. If you absolutely need predicted times for something, you might be able to do a bit of a composite estimate - time the smaller chunks of the application separately, and then use those to determine how long you expect the application as a whole to run. For most situations, though, it would be much faster to just run the program itself rather than trying to predict it.
Store the time before and after the execution ? Then you could know the execution time
I know it sounds strange and that's a bad way to write a question,but let me show you this odd behavior.
as you can see this signal, r5, is nice and clean. exactly what I expected from my simulation.
now look at this:
this is EXACTLY the same simulation,the only difference is that the filter is now not connected. I tried for hours to find a reason,but it seems like a bug.
This is my file, you can test it yourself disconnecting the filter.
----edited.
Tried it with simulink 2014 and on friend's 2013,on two different computers...if Someone can test it on 2015 it would be great.
(attaching the filter to any other r,r1-r4 included ''fixes'' the noise (on ALL r1-r8),I tried putting it on other signals but the noise won't go away).
the expected result is exactly the smooth one, this file showed to be quite robust on other simulations (so I guess the math inside the blocks is good) and this case happens only with one of the two''link number'' (one input on the top left) set to 4,even if a small noise appears with one ''link number'' set to 3.
thanks in advance for any help.
It seems to me that the only thing the filter could affect is the time step used in the integration, assuming you are using a dynamic time step (which is the default). So, my guess is that (if this is not a bug) your system is numerically unstable/chaotic. It could also be related to noise, caused by differentiation. Differentiating noise over a smaller time step mostly makes things even worse.
Solvers such as ode23 and ode45 use a dynamic time step. ode23 compares a second and third order integration and selects the third one if the difference between the two is not too big. If the difference is too big, it does another calculation with a smaller timestep. ode45 does the same with a fourth and fifth order calculation, more accurate, but more sensitive. Instabilities can occur if a smaller time step makes things worse, which could occur if you differentiate noise.
To overcome the problem, try using a fixed time step, change your precision/solver, or better: avoid differentiation, use some type of state estimator to obtain derivatives or calculate analytically.
I want to simulate a model in Dymola in real-time for HiL use. In the results I see that the Simulation is advancing about 5% too fast.
Integration terminated successfully at T = 691200
CPU-time for integration : 6.57e+005 seconds
CPU-time for one GRID interval: 951 milli-seconds
I already tried to increase the grid interval to reduce the relativ error, but still the simulation is advancing too fast. I only read about aproaches to reduce model complexity to allow simulation within the defined time steps.
Note, that the Simulation does keep up with real-time and is even faster. How can I ín this case match simulated time and real time?
Edit 1:
I used Lsodar solver with checked "Synchronize with realtime option" in Realtime tab. I have the realtime simulation licence option. I use Dymola 2013 on Windows 7. Here the result for a stepsize of 15s:
Integration terminated successfully at T = 691200
CPU-time for integration : 6.6e+005 seconds
CPU-time for one GRID interval : 1.43e+004 milli-seconds
The deviation still is roughly about 4.5%.
I did however not use inline integration.
Do I need hard realtime or inline integration to improve those results? It should be possible to get a deviation lower than 4.5% using soft realtime or not?
Edit 2:
I took the Python27 block from the Berkeley Buildings library to read the System time and compare it with the Simulation advance. The result shows that 36 hours after Simulation start, the Simulation slows down slightly (compared to real time). About 72 hours after the start of the simulation it starts getting about 10% faster than real time. In addition, the jitter in the result increases after those 72 hours.
Any explanations?
Next steps will be:
-changing to fixed step solver (Might well be this is a big part of the solution)
-Changing from DDE Server to OPC Server, which at the Moment doesn't not seem to be possible in Dymola 2013 however.
Edit 3:
Nope... using a fixed step solver does seem to solve the problem. In the first 48 hours of simulation time the deviation seems to be equal to the deviation using a solver with variable step size. In this example I used the Rkfix 3 solver with an integrator step of 0.1.
Nobody knows how to get rid of those huge deviations?
If I recall correctly, Dymola has a special compilation option for real-time performance. However, I think it is a licensed option (not sure).
I suspect that Dymola is picking up the wrong clock speed.
You could use the "Slowdown factor" that is in the Simulation Setup, on the Realtime tab just below "Synchronize with realtime". Set this to 1/0.95.
There is a parameter in Dymola that you can use to set the CPU speed but I could not find this now, I will have a look for this again later.
I solved the problem switching to an embedded OPC-Server. Error between real time and simulation time in this case is shown below.
Compiling Dymola Problems with an embedded OPC-Server requires administrator rights (which I did not have before). The active folder of Dymola must not be write protected.
I am trying to run a real-time simulation in Simulink using Real-time Workshop. The target is grt(I have tried rtwin, but my simulation refuses to compile for it). I need the simulation to run in real-time so that one second in simulation lasts one second of real time. Grt ignores realtime and finishes the simulation in shortest time possible. Is there any way to synchronise it?
I have tried http://www.mathworks.com/matlabcentral/fileexchange/3175 but could not get it to work(does not compile).
Thank you for any suggestions.
Looks like it is impossible. I was able to slow down the execution by using Sleep(time in ms) function from WinApi and clock function from time.h, which looked quite good for low sample rates. However, when I increased the sample rate the Sleep function was sleeping for too long, which resulted in errors, with one second in simulation lasting more than one real world second.
The idea was to say that one period of iteration should last, let's say 200ms. Then time how long it takes for one iteration of code to execute using the clock function. Then call Sleep(200 - u), where u is the length of the iteration. The problem is that Sleep function sleeps the process and wakes it up when it wants to, not when you tell it to in the argument.
I know this is not a solution, but post this so that if anyone faces the same problem as me they won't try this dead-end solution. I had to rewrite the simulation for rtwin and now it works fine.
Another idea would be to somehow use interrupts, but I guess it would be quite complicated and not worth the trouble.