what is happening behind the scenes in optional if statements in swift - swift

accodring to apple documentation the following code checks if convertedNumber has been initialized, and if so, it executes the if block.
let convertedNumber: Int?
if convertedNumber {
//do stuff
}
I'm interested in what's happening behind the scenes. Is this some sort of shorthand notation, because the condition in if statement must evaluate to boolean true or false. how is the fact that convertedNumebr contains a value transformed into true or false?
I was thinking that this is a shorthand notation for:
if convertedNumber!=nil {
//do stuff
}
correct me if I'm wrong.

The "shorthand test" for optionals
if someOptional {
//do stuff
}
existed only in early version of Swift.
From the Xcode 6 beta 5 release notes:
Optionals no longer conform to the BooleanType (formerly LogicValue)
protocol, so they may no longer be used in place of boolean
expressions (they must be explicitly compared with v != nil). This
resolves confusion around Bool? and related types, makes code more
explicit about what test is expected, and is more consistent with the
rest of the language.
So with current Xcode versions, you have to test with
if someOptional != nil {
//do stuff
}
or, of course, with optional binding.
In addition, struct Optional conforms to the NilLiteralConvertible
protocol, so that (in this context) nil is identical to
Optional<T>.None with the matching type T.

Related

Swift short syntax of execution

I am looking for the way to write short syntax.
For instance. In JS, PHP and etc.
var a = 1 ;
function Foo ()-> void {}
a && Foo() ;
if a exists, run Foo.
a and Foo itself already mean exist or not, the syntax is away better looks....
However, in Swift, the typing checking is kinda of tough.
var a = 1 ;
func Foo ()-> Foid {} ;
a && Foo();
will generate neither are Bool returning error.
a != nil && Foo() ;
this can resolve and variable condition, but what if the better bypass for the function condition? I just dont want to write something like
if( a != nil ) { Foo() } ;
Yet what is the better syntax for Not Exist?
if ( !a ) or !a //is easy and better looks...
I found not similar thing in swift...
if( a == nil ) // will throws error when its not Optional Typing.
guard var b = xxx else {} // simply for Exist and very long syntax.
Thank you for your advice!
As mentioned by other contributors, Swift emphasizes readability and thus, explicit syntax. It would be sacrilege for the Swift standard library to support Python-style truth value testing.
That being said, Swift’s extensibility allows us to implement such functionality ourselves—if we really want to.
prefix func !<T>(value: T) -> Bool {
switch T.self {
case is Bool.Type:
return value as! Bool
default:
guard Double(String(describing: value)) != 0
else { return false }
return true
}
}
prefix func !<T>(value: T?) -> Bool {
guard let unwrappedValue = value
else { return false }
return !unwrappedValue
}
var a = 1
func foo() -> Void { }
!a && !foo()
Or even define our own custom operator:
prefix operator ✋
prefix func ✋<T>(value: T) -> Bool {
/// Same body as the previous example.
}
prefix func ✋<T>(value: T?) -> Bool {
guard let unwrappedValue = value
else { return false }
return ✋unwrappedValue
}
var a = 1
func foo() -> Void { }
✋a && ✋foo()
The expectations you've developed from dynamic languages like PHP and JS (and Ruby, Python for that matter) are almost universally inapplicable to static languages like Swift.
Swift is a statically compiled language. If you reference a variable that doesn't exist, it's not legal Swift code, and the compiler will fail your build. Given that, the question of "how do I check if a variable is undefined?" is completely moot in Swift. If you have a successfully compiling program that references a variable a, then a exists. There's absolutely no reason for a check, and so a mechanism for it doesn't even exist.
Static vs Dynamic typing
Static type systems are like mathematical proof systems. They produce rigerous proofs that certain aspects of your program are valid. This has trade-offs. The rigidity buys you many guarantees. For example, you'll never have a valid Swift program where you accidentally pass an Int where a Bool is expected. The static type system makes that class of error literally impossible, so it's not something you have to remember to check for yourself.
On the other hand, many truths are easier to intuit than to prove. Thus, there's great utility in scripting and dynamic languages, because they don't demand the rigorous proofs of your claims that static languages require. On the down side, their type systems "do" much less. For example, JS happily lets you reference an undefined variable. To remedy this, JS provides a way for you to do a run-time check to see whether a variable is defined or not. But this isn't a problem Swift has, so the "solution" is absent.
When static typing is too hard
Swift actually takes a middle ground position. If you find yourself with a statement that's obviously true, but hard to prove to the compiler, various "escape hatches" exist that allow you to leave the safety of the type system, and go into dynamic land. For example, if you look at an IBOutlet, and see that it's connected to an element in a storyboard, you can intuitively be sure that the IBOutlet is not nil. But that's not something you can prove to the compiler, and hence when you see implicitly unwrapped optionals being used for IBOutlets.
Implicitly unwrapped optionals are one such "escape hatch". The Any type is another, as is unsafeBitcast(_:to:), withoutActuallyEscaping(_:), as!, try!, etc.
Swift takes type safety very seriously. Unlike C or JS we can not use anything that doesn't resolve to Bool value type in If statement in Swift. So there won't be a short hand for that(at-least that I know of). Regarding below code
if( a == nil ) // will throws error when its not Optional Typing.
Swift doesn't allow you to set nil to non optional types. So there is no need to check for nil. By the way both Obj-C and Swift use verbose syntax, we need to get use to that.
In this case you are trying to force Swift to work in a way that you are used to with other languages like JavaScript or PHP, as you say in your comment. There are a few reasons why your code won't compile, but it mainly falls on the fact that Swift doesn't do the same truthy and falsy stuff JS does.
var a = 1
if a {
print("won't compile")
}
//'Int' is not convertible to 'Bool'
In Swift it's better to use an actual Bool value if that's what it's supposed to be, or if it's truly supposed to be an Int you're just going to have to check the value
var a = true
if a {
print("this compiles")
}
or
var a = 1
if a > 0 {
print("this compiles too")
}
Swift really isn't meant to be as loose as JS, so you should just embrace that and take advantage of the safety and readability.
Here is one way most similar to what you designed.
You may have to set the type of a to Int?:
var a: Int? = 1
func foo ()-> Void {}
a.map{_ in foo()}

Returning an implicitly unwrapped optional

I'm writing a program in Swift which has various functions which should always return values, but in some cases cannot, and so the program crashes and alerts the user of the error. To accomplish this, I am using implicitly unwrapped Optionals as return values for my functions, so that error cases can just return nil (even though that code will never be reached). It looks something like this:
func giveMeAThing() -> Thing! {
if !possibleErrorCase() {
var thing = createAThingForSure()
return thing
}
else {
crashAndBurn()
return nil
}
}
Writing this, it feels a bit hacky, so my question is whether or not this is a good use of implicitly unwrapped Optionals in Swift. Is there a better way to structure my code that will avoid this?
It may be that the piece of the puzzle you are missing is #noreturn. If you declare a function as #noreturn, the compiler abandons any complaints if you don't fulfill the surrounding contract. Thus you can call such a method and not return any value, and the compiler will not complain because it knows we are going to die anyway. For example, fatalError and abort are declared this way.
Thus, the following is legal:
func f() -> String {
fatalError("oooooops")
}
That compiles even though we fail to fulfill the contract of returning a value, because #noreturn (in the declaration of fatalError) tears up the contract and flushes the pieces down the toilet.
Another possible way of approaching the same issue is to use assert. This crashes and burns for you if a condition is not met. So, in your example:
func giveMeAThing() -> Thing {
assert(!possibleErrorCase(), "gaaaaah!") // crash and burn if error case
return createAThingForSure()
}
The downside is that by default all asserts succeed in a shipping app. But it's great during development, and after all your shipping app should not be crashing and burning anyway.
I'd rather write this as
func giveMeAThing() -> Thing! {
if possibleErrorCase() {
crashAndBurn() // I assume this will not return anyhow
}
return createAThingForSure()
}
but that's likely just a question of taste.
You don't need an implicitly unwrapped optional since you don't expect the second case to return any value.
As commenters noted, use fatalError in the fail case.

Is Swift optional chaining always done with the if let construction, or is it just done using a question mark with an optional?

As per Apple docs, optional chaining is the following:
You specify optional chaining by placing a question mark (?) after the optional value on which you wish to call a property, method or subscript if the optional is non-nil. ... optional chaining fails gracefully when the optional is nil ...
My interpretation of this is that a construction as the following is optional chaining:
someMasterObject.possiblyNilHandler?.handleTheSituation()
...and that the above line would call the handleTheSituation method if the handler is not nil, and fails gracefully (line skipped) if the handler is nil.
However almost all examples I see of optional chaining use the "if let" construction, as per:
if let handler = someMasterObject.possiblyNilHandler{
handler.handleTheSituation()
}
In fact, the documentation and examples I have found on the net make such heavy use of the "if let" construction in relation to optional chaining that it seems as if that IS optional chaining.
Am I correct, however, in assuming that my first example is a supported use of optional chaining and that the if let construction is another construction using (or being intimately tied to) optional chaining?
Optional chaining is useful in more cases than just optional binding (if let):
person?.name = "Fred" // assign "Fred" to name property if person is not nil
person?.congratulate() // call congratulate method if person is not nil
let name = person?.name ?? "none" // nil coalescing operator
let age = dict?["age"] ?? 0 // subscripting an optional variable
if var name = person?.name { // optional binding using var instead of let
The conclusion is correct - let is an independent, but useful, construct. In context it introduces a binding only within the if-body and executes the if-body only if the bound value is not-nil. (Technically it unwraps an optional binding.)
let does not affect how the expression on the right (with or without chaining) is handled. For instance, if someMasterObject were optional/nil it would fail and not "chain" - even with let.
When one or the other (or both) is more "correct" depends on the situation: eg. what is being chained and what the corrective action should be.
For instance, if someMasterObject could be nil, we might have the following which uses both chaining and let. Also note how the return value matters and is not simply discarded or "nil on failure":
if let handler = someMasterObject?.possiblyNilHandler{
return handler.handleTheSituation()
} else {
return FAILED_TO_CALL
}
Then compare it with a non-equivalent chained form, which would only return nil in the failed-to-call case, but nil might be a valid return value from handleTheSituation!
return someMasterObject?.possiblyNilHandler?.handleTheSituation()
On the other hand, do consider that there is always direct translation of chaining to nested if-let statements:
result_of_expression = someMasterObject?.possiblyNilHandle?.handleTheSituation()
if let master = someMasterObject {
if let handler = master.possiblyNilHandler {
result_of_expression = handler.handleTheSituation()
} else {
result_of_expression = nil
}
} else {
result_of_expression = nil
}
Calling methods through optional chaining is perfectly alright - you do not need an if around it. If the optional value happens to be nil at the time of the call, your code would not throw an exception. However, you wouldn't be able to find out whether the method has run or not.
However, typically you want to place an if around the optional chaining method call to detect if the method has been called or not:
func printNumberOfRooms() {
println("The number of rooms is \(numberOfRooms)")
}
if john.residence?.printNumberOfRooms() != nil {
println("It was possible to print the number of rooms.")
} else {
println("It was not possible to print the number of rooms.")
}
Link to the book chapter.
Note that the nil check works even though the function in the example has no return value. Since it is called on an optional value using optional chaining, the type is Void?, not Void, which makes the comparison possible.

What is an optional value in Swift?

From Apple's documentation:
You can use if and let together to work with values that might be missing. These values are represented as optionals. An optional value either contains a value or contains nil to indicate that the value is missing. Write a question mark (?) after the type of a value to mark the value as optional.
Why would you want to use an optional value?
An optional in Swift is a type that can hold either a value or no value. Optionals are written by appending a ? to any type:
var name: String? = "Bertie"
Optionals (along with Generics) are one of the most difficult Swift concepts to understand. Because of how they are written and used, it's easy to get a wrong idea of what they are. Compare the optional above to creating a normal String:
var name: String = "Bertie" // No "?" after String
From the syntax it looks like an optional String is very similar to an ordinary String. It's not. An optional String is not a String with some "optional" setting turned on. It's not a special variety of String. A String and an optional String are completely different types.
Here's the most important thing to know: An optional is a kind of container. An optional String is a container which might contain a String. An optional Int is a container which might contain an Int. Think of an optional as a kind of parcel. Before you open it (or "unwrap" in the language of optionals) you won't know if it contains something or nothing.
You can see how optionals are implemented in the Swift Standard Library by typing "Optional" into any Swift file and ⌘-clicking on it. Here's the important part of the definition:
enum Optional<Wrapped> {
case none
case some(Wrapped)
}
Optional is just an enum which can be one of two cases: .none or .some. If it's .some, there's an associated value which, in the example above, would be the String "Hello". An optional uses Generics to give a type to the associated value. The type of an optional String isn't String, it's Optional, or more precisely Optional<String>.
Everything Swift does with optionals is magic to make reading and writing code more fluent. Unfortunately this obscures the way it actually works. I'll go through some of the tricks later.
Note: I'll be talking about optional variables a lot, but it's fine to create optional constants too. I mark all variables with their type to make it easier to understand type types being created, but you don't have to in your own code.
How to create optionals
To create an optional, append a ? after the type you wish to wrap. Any type can be optional, even your own custom types. You can't have a space between the type and the ?.
var name: String? = "Bob" // Create an optional String that contains "Bob"
var peter: Person? = Person() // An optional "Person" (custom type)
// A class with a String and an optional String property
class Car {
var modelName: String // must exist
var internalName: String? // may or may not exist
}
Using optionals
You can compare an optional to nil to see if it has a value:
var name: String? = "Bob"
name = nil // Set name to nil, the absence of a value
if name != nil {
print("There is a name")
}
if name == nil { // Could also use an "else"
print("Name has no value")
}
This is a little confusing. It implies that an optional is either one thing or another. It's either nil or it's "Bob". This is not true, the optional doesn't transform into something else. Comparing it to nil is a trick to make easier-to-read code. If an optional equals nil, this just means that the enum is currently set to .none.
Only optionals can be nil
If you try to set a non-optional variable to nil, you'll get an error.
var red: String = "Red"
red = nil // error: nil cannot be assigned to type 'String'
Another way of looking at optionals is as a complement to normal Swift variables. They are a counterpart to a variable which is guaranteed to have a value. Swift is a careful language that hates ambiguity. Most variables are define as non-optionals, but sometimes this isn't possible. For example, imagine a view controller which loads an image either from a cache or from the network. It may or may not have that image at the time the view controller is created. There's no way to guarantee the value for the image variable. In this case you would have to make it optional. It starts as nil and when the image is retrieved, the optional gets a value.
Using an optional reveals the programmers intent. Compared to Objective-C, where any object could be nil, Swift needs you to be clear about when a value can be missing and when it's guaranteed to exist.
To use an optional, you "unwrap" it
An optional String cannot be used in place of an actual String. To use the wrapped value inside an optional, you have to unwrap it. The simplest way to unwrap an optional is to add a ! after the optional name. This is called "force unwrapping". It returns the value inside the optional (as the original type) but if the optional is nil, it causes a runtime crash. Before unwrapping you should be sure there's a value.
var name: String? = "Bob"
let unwrappedName: String = name!
print("Unwrapped name: \(unwrappedName)")
name = nil
let nilName: String = name! // Runtime crash. Unexpected nil.
Checking and using an optional
Because you should always check for nil before unwrapping and using an optional, this is a common pattern:
var mealPreference: String? = "Vegetarian"
if mealPreference != nil {
let unwrappedMealPreference: String = mealPreference!
print("Meal: \(unwrappedMealPreference)") // or do something useful
}
In this pattern you check that a value is present, then when you are sure it is, you force unwrap it into a temporary constant to use. Because this is such a common thing to do, Swift offers a shortcut using "if let". This is called "optional binding".
var mealPreference: String? = "Vegetarian"
if let unwrappedMealPreference: String = mealPreference {
print("Meal: \(unwrappedMealPreference)")
}
This creates a temporary constant (or variable if you replace let with var) whose scope is only within the if's braces. Because having to use a name like "unwrappedMealPreference" or "realMealPreference" is a burden, Swift allows you to reuse the original variable name, creating a temporary one within the bracket scope
var mealPreference: String? = "Vegetarian"
if let mealPreference: String = mealPreference {
print("Meal: \(mealPreference)") // separate from the other mealPreference
}
Here's some code to demonstrate that a different variable is used:
var mealPreference: String? = "Vegetarian"
if var mealPreference: String = mealPreference {
print("Meal: \(mealPreference)") // mealPreference is a String, not a String?
mealPreference = "Beef" // No effect on original
}
// This is the original mealPreference
print("Meal: \(mealPreference)") // Prints "Meal: Optional("Vegetarian")"
Optional binding works by checking to see if the optional equals nil. If it doesn't, it unwraps the optional into the provided constant and executes the block. In Xcode 8.3 and later (Swift 3.1), trying to print an optional like this will cause a useless warning. Use the optional's debugDescription to silence it:
print("\(mealPreference.debugDescription)")
What are optionals for?
Optionals have two use cases:
Things that can fail (I was expecting something but I got nothing)
Things that are nothing now but might be something later (and vice-versa)
Some concrete examples:
A property which can be there or not there, like middleName or spouse in a Person class
A method which can return a value or nothing, like searching for a match in an array
A method which can return either a result or get an error and return nothing, like trying to read a file's contents (which normally returns the file's data) but the file doesn't exist
Delegate properties, which don't always have to be set and are generally set after initialization
For weak properties in classes. The thing they point to can be set to nil at any time
A large resource that might have to be released to reclaim memory
When you need a way to know when a value has been set (data not yet loaded > the data) instead of using a separate dataLoaded Boolean
Optionals don't exist in Objective-C but there is an equivalent concept, returning nil. Methods that can return an object can return nil instead. This is taken to mean "the absence of a valid object" and is often used to say that something went wrong. It only works with Objective-C objects, not with primitives or basic C-types (enums, structs). Objective-C often had specialized types to represent the absence of these values (NSNotFound which is really NSIntegerMax, kCLLocationCoordinate2DInvalid to represent an invalid coordinate, -1 or some negative value are also used). The coder has to know about these special values so they must be documented and learned for each case. If a method can't take nil as a parameter, this has to be documented. In Objective-C, nil was a pointer just as all objects were defined as pointers, but nil pointed to a specific (zero) address. In Swift, nil is a literal which means the absence of a certain type.
Comparing to nil
You used to be able to use any optional as a Boolean:
let leatherTrim: CarExtras? = nil
if leatherTrim {
price = price + 1000
}
In more recent versions of Swift you have to use leatherTrim != nil. Why is this? The problem is that a Boolean can be wrapped in an optional. If you have Boolean like this:
var ambiguous: Boolean? = false
it has two kinds of "false", one where there is no value and one where it has a value but the value is false. Swift hates ambiguity so now you must always check an optional against nil.
You might wonder what the point of an optional Boolean is? As with other optionals the .none state could indicate that the value is as-yet unknown. There might be something on the other end of a network call which takes some time to poll. Optional Booleans are also called "Three-Value Booleans"
Swift tricks
Swift uses some tricks to allow optionals to work. Consider these three lines of ordinary looking optional code;
var religiousAffiliation: String? = "Rastafarian"
religiousAffiliation = nil
if religiousAffiliation != nil { ... }
None of these lines should compile.
The first line sets an optional String using a String literal, two different types. Even if this was a String the types are different
The second line sets an optional String to nil, two different types
The third line compares an optional string to nil, two different types
I'll go through some of the implementation details of optionals that allow these lines to work.
Creating an optional
Using ? to create an optional is syntactic sugar, enabled by the Swift compiler. If you want to do it the long way, you can create an optional like this:
var name: Optional<String> = Optional("Bob")
This calls Optional's first initializer, public init(_ some: Wrapped), which infers the optional's associated type from the type used within the parentheses.
The even longer way of creating and setting an optional:
var serialNumber:String? = Optional.none
serialNumber = Optional.some("1234")
print("\(serialNumber.debugDescription)")
Setting an optional to nil
You can create an optional with no initial value, or create one with the initial value of nil (both have the same outcome).
var name: String?
var name: String? = nil
Allowing optionals to equal nil is enabled by the protocol ExpressibleByNilLiteral (previously named NilLiteralConvertible). The optional is created with Optional's second initializer, public init(nilLiteral: ()). The docs say that you shouldn't use ExpressibleByNilLiteral for anything except optionals, since that would change the meaning of nil in your code, but it's possible to do it:
class Clint: ExpressibleByNilLiteral {
var name: String?
required init(nilLiteral: ()) {
name = "The Man with No Name"
}
}
let clint: Clint = nil // Would normally give an error
print("\(clint.name)")
The same protocol allows you to set an already-created optional to nil. Although it's not recommended, you can use the nil literal initializer directly:
var name: Optional<String> = Optional(nilLiteral: ())
Comparing an optional to nil
Optionals define two special "==" and "!=" operators, which you can see in the Optional definition. The first == allows you to check if any optional is equal to nil. Two different optionals which are set to .none will always be equal if the associated types are the same. When you compare to nil, behind the scenes Swift creates an optional of the same associated type, set to .none then uses that for the comparison.
// How Swift actually compares to nil
var tuxedoRequired: String? = nil
let temp: Optional<String> = Optional.none
if tuxedoRequired == temp { // equivalent to if tuxedoRequired == nil
print("tuxedoRequired is nil")
}
The second == operator allows you to compare two optionals. Both have to be the same type and that type needs to conform to Equatable (the protocol which allows comparing things with the regular "==" operator). Swift (presumably) unwraps the two values and compares them directly. It also handles the case where one or both of the optionals are .none. Note the distinction between comparing to the nil literal.
Furthermore, it allows you to compare any Equatable type to an optional wrapping that type:
let numberToFind: Int = 23
let numberFromString: Int? = Int("23") // Optional(23)
if numberToFind == numberFromString {
print("It's a match!") // Prints "It's a match!"
}
Behind the scenes, Swift wraps the non-optional as an optional before the comparison. It works with literals too (if 23 == numberFromString {)
I said there are two == operators, but there's actually a third which allow you to put nil on the left-hand side of the comparison
if nil == name { ... }
Naming Optionals
There is no Swift convention for naming optional types differently from non-optional types. People avoid adding something to the name to show that it's an optional (like "optionalMiddleName", or "possibleNumberAsString") and let the declaration show that it's an optional type. This gets difficult when you want to name something to hold the value from an optional. The name "middleName" implies that it's a String type, so when you extract the String value from it, you can often end up with names like "actualMiddleName" or "unwrappedMiddleName" or "realMiddleName". Use optional binding and reuse the variable name to get around this.
The official definition
From "The Basics" in the Swift Programming Language:
Swift also introduces optional types, which handle the absence of a value. Optionals say either “there is a value, and it equals x” or “there isn’t a value at all”. Optionals are similar to using nil with pointers in Objective-C, but they work for any type, not just classes. Optionals are safer and more expressive than nil pointers in Objective-C and are at the heart of many of Swift’s most powerful features.
Optionals are an example of the fact that Swift is a type safe language. Swift helps you to be clear about the types of values your code can work with. If part of your code expects a String, type safety prevents you from passing it an Int by mistake. This enables you to catch and fix errors as early as possible in the development process.
To finish, here's a poem from 1899 about optionals:
Yesterday upon the stair
I met a man who wasn’t there
He wasn’t there again today
I wish, I wish he’d go away
Antigonish
More resources:
The Swift Programming Guide
Optionals in Swift (Medium)
WWDC Session 402 "Introduction to Swift" (starts around 14:15)
More optional tips and tricks
Let's take the example of an NSError, if there isn't an error being returned you'd want to make it optional to return Nil. There's no point in assigning a value to it if there isn't an error..
var error: NSError? = nil
This also allows you to have a default value. So you can set a method a default value if the function isn't passed anything
func doesntEnterNumber(x: Int? = 5) -> Bool {
if (x == 5){
return true
} else {
return false
}
}
You can't have a variable that points to nil in Swift — there are no pointers, and no null pointers. But in an API, you often want to be able to indicate either a specific kind of value, or a lack of value — e.g. does my window have a delegate, and if so, who is it? Optionals are Swift's type-safe, memory-safe way to do this.
I made a short answer, that sums up most of the above, to clean the uncertainty that was in my head as a beginner:
Opposed to Objective-C, no variable can contain nil in Swift, so the Optional variable type was added (variables suffixed by "?"):
var aString = nil //error
The big difference is that the Optional variables don't directly store values (as a normal Obj-C variables would) they contain two states: "has a value" or "has nil":
var aString: String? = "Hello, World!"
aString = nil //correct, now it contains the state "has nil"
That being, you can check those variables in different situations:
if let myString = aString? {
println(myString)
}
else {
println("It's nil") // this will print in our case
}
By using the "!" suffix, you can also access the values wrapped in them, only if those exist. (i.e it is not nil):
let aString: String? = "Hello, World!"
// var anotherString: String = aString //error
var anotherString: String = aString!
println(anotherString) //it will print "Hello, World!"
That's why you need to use "?" and "!" and not use all of them by default. (this was my biggest bewilderment)
I also agree with the answer above: Optional type cannot be used as a boolean.
In objective C variables with no value were equal to 'nil'(it was also possible to use 'nil' values same as 0 and false), hence it was possible to use variables in conditional statements (Variables having values are same as 'TRUE' and those with no values were equal to 'FALSE').
Swift provides type safety by providing 'optional value'. i.e. It prevents errors formed from assigning variables of different types.
So in Swift, only booleans can be provided on conditional statements.
var hw = "Hello World"
Here, even-though 'hw' is a string, it can't be used in an if statement like in objective C.
//This is an error
if hw
{..}
For that it needs to be created as,
var nhw : String? = "Hello World"
//This is correct
if nhw
{..}
Optional value allows you to show absence of value. Little bit like NULL in SQL or NSNull in Objective-C. I guess this will be an improvement as you can use this even for "primitive" types.
// Reimplement the Swift standard library's optional type
enum OptionalValue<T> {
case None
case Some(T)
}
var possibleInteger: OptionalValue<Int> = .None
possibleInteger = .Some(100)”
Excerpt From: Apple Inc. “The Swift Programming Language.” iBooks. https://itun.es/gb/jEUH0.l
An optional means that Swift is not entirely sure if the value corresponds to the type: for example, Int? means that Swift is not entirely sure whether the number is an Int.
To remove it, there are three methods you could employ.
1) If you are absolutely sure of the type, you can use an exclamation mark to force unwrap it, like this:
// Here is an optional variable:
var age: Int?
// Here is how you would force unwrap it:
var unwrappedAge = age!
If you do force unwrap an optional and it is equal to nil, you may encounter this crash error:
This is not necessarily safe, so here's a method that might prevent crashing in case you are not certain of the type and value:
Methods 2 and three safeguard against this problem.
2) The Implicitly Unwrapped Optional
if let unwrappedAge = age {
// continue in here
}
Note that the unwrapped type is now Int, rather than Int?.
3) The guard statement
guard let unwrappedAge = age else {
// continue in here
}
From here, you can go ahead and use the unwrapped variable. Make sure only to force unwrap (with an !), if you are sure of the type of the variable.
Good luck with your project!
When i started to learn Swift it was very difficult to realize why optional.
Lets think in this way.
Let consider a class Person which has two property name and company.
class Person: NSObject {
var name : String //Person must have a value so its no marked as optional
var companyName : String? ///Company is optional as a person can be unemployed that is nil value is possible
init(name:String,company:String?) {
self.name = name
self.companyName = company
}
}
Now lets create few objects of Person
var tom:Person = Person.init(name: "Tom", company: "Apple")//posible
var bob:Person = Person.init(name: "Bob", company:nil) // also Possible because company is marked as optional so we can give Nil
But we can not pass Nil to name
var personWithNoName:Person = Person.init(name: nil, company: nil)
Now Lets talk about why we use optional?.
Lets consider a situation where we want to add Inc after company name like apple will be apple Inc. We need to append Inc after company name and print.
print(tom.companyName+" Inc") ///Error saying optional is not unwrapped.
print(tom.companyName!+" Inc") ///Error Gone..we have forcefully unwrap it which is wrong approach..Will look in Next line
print(bob.companyName!+" Inc") ///Crash!!!because bob has no company and nil can be unwrapped.
Now lets study why optional takes into place.
if let companyString:String = bob.companyName{///Compiler safely unwrap company if not nil.If nil,no unwrap.
print(companyString+" Inc") //Will never executed and no crash!!!
}
Lets replace bob with tom
if let companyString:String = tom.companyName{///Compiler safely unwrap company if not nil.If nil,no unwrap.
print(companyString+" Inc") //Will executed and no crash!!!
}
And Congratulation! we have properly deal with optional?
So the realization points are
We will mark a variable as optional if its possible to be nil
If we want to use this variable somewhere in code compiler will
remind you that we need to check if we have proper deal with that variable
if it contain nil.
Thank you...Happy Coding
Lets Experiment with below code Playground.I Hope will clear idea what is optional and reason of using it.
var sampleString: String? ///Optional, Possible to be nil
sampleString = nil ////perfactly valid as its optional
sampleString = "some value" //Will hold the value
if let value = sampleString{ /// the sampleString is placed into value with auto force upwraped.
print(value+value) ////Sample String merged into Two
}
sampleString = nil // value is nil and the
if let value = sampleString{
print(value + value) ///Will Not execute and safe for nil checking
}
// print(sampleString! + sampleString!) //this line Will crash as + operator can not add nil
From https://developer.apple.com/library/content/documentation/Swift/Conceptual/Swift_Programming_Language/OptionalChaining.html:
Optional chaining is a process for querying and calling properties, methods, and subscripts on an optional that might currently be nil. If the optional contains a value, the property, method, or subscript call succeeds; if the optional is nil, the property, method, or subscript call returns nil. Multiple queries can be chained together, and the entire chain fails gracefully if any link in the chain is nil.
To understand deeper, read the link above.
Well...
? (Optional) indicates your variable may contain a nil value while ! (unwrapper) indicates your variable must have a memory (or value) when it is used (tried to get a value from it) at runtime.
The main difference is that optional chaining fails gracefully when the optional is nil, whereas forced unwrapping triggers a runtime error when the optional is nil.
To reflect the fact that optional chaining can be called on a nil value, the result of an optional chaining call is always an optional value, even if the property, method, or subscript you are querying returns a nonoptional value. You can use this optional return value to check whether the optional chaining call was successful (the returned optional contains a value), or did not succeed due to a nil value in the chain (the returned optional value is nil).
Specifically, the result of an optional chaining call is of the same type as the expected return value, but wrapped in an optional. A property that normally returns an Int will return an Int? when accessed through optional chaining.
var defaultNil : Int? // declared variable with default nil value
println(defaultNil) >> nil
var canBeNil : Int? = 4
println(canBeNil) >> optional(4)
canBeNil = nil
println(canBeNil) >> nil
println(canBeNil!) >> // Here nil optional variable is being unwrapped using ! mark (symbol), that will show runtime error. Because a nil optional is being tried to get value using unwrapper
var canNotBeNil : Int! = 4
print(canNotBeNil) >> 4
var cantBeNil : Int = 4
cantBeNil = nil // can't do this as it's not optional and show a compile time error
Here is basic tutorial in detail, by Apple Developer Committee: Optional Chaining
An optional in Swift is a type that can hold either a value or no value. Optionals are written by appending a ? to any type:
var name: String?
You can refer to this link to get knowledge in deep: https://medium.com/#agoiabeladeyemi/optionals-in-swift-2b141f12f870
There are lots of errors which are caused by people trying to use a value which is not set, sometime this can cause a crash, in objective c trying to call the methods of a nil object reference would just be ignored, so some piece of your code not executing and the compiler or written code has no way of telling your why. An optional argument let you have variables that can never be nil, and if you try to do build it the compiler can tell you before your code has even had a chance to run, or you can decide that its appropriate for the object to be undefined, and then the compiler can tell you when you try to write something that doesn't take this into account.
In the case of calling a possible nil object you can just go
object?.doSomthing()
You have made it explicit to the compiler and any body who reads your code, that its possible object is nil and nothing will happen. Some times you have a few lines of code you only want to occur if the value exists, so you can do
if let obj = object {
obj.doSomthing()
doSomethingto(obj)
}
The two statements will only execute if object is something, simarly you may want to stop the rest of the entire block of code if its not something
guard let obj = object {
return
}
obj.doSomthing()
doSomethingto(obj)
This can be simpler to read if everything after is only applicable if object is something, another possiblity is you want to use a default value
let obj = object ?? <default-object>
obj.doSomthing()
doSomethingto(obj)
Now obj will be assigned to something even if its a default value for the type
options are useful in situation where a value may not gain a value until some event has occurred or you can use setting an option to nil as a way to say its no longer relevant or needs to be set again and everything that uses it has no point it doing anything with it until it is set, one way I like to use optionals is to tell me something has to be done or if has already been done for example
func eventFired() {
guard timer == nil else { return }
timer = scheduleTimerToCall(method, in: 60)
}
func method() {
doSomthing()
timer = nil
}
This sudo code can call eventFired many times, but it's only on the first call that a timer is scheduled, once the schedule executes, it runs some method and sets timer back to nil so another timer can be scheduled.
Once you get around your head around variables being in an undefined state you can use that for all sort of thing.
It's very simple. Optional (in Swift) means a variable/constant can be nullable. You can see that Kotlin language implements the same thing but never calls it an 'optional'. For example:
var lol: Laugh? = nil
is equivalent to this in Kotlin:
var lol: Laugh? = null
or this in Java:
#Nullable Laugh lol = null;
In the very first example, if you don't use the ?symbol in front of the object type, then you will have an error. Because the question mark means that the variable/constant can be null, therefore being called optional.
Here is an equivalent optional declaration in Swift:
var middleName: String?
This declaration creates a variable named middleName of type String. The question mark (?) after the String variable type indicates that the middleName variable can contain a value that can either be a String or nil. Anyone looking at this code immediately knows that middleName can be nil. It's self-documenting!
If you don't specify an initial value for an optional constant or variable (as shown above) the value is automatically set to nil for you. If you prefer, you can explicitly set the initial value to nil:
var middleName: String? = nil
for more detail for optional read below link
http://www.iphonelife.com/blog/31369/swift-101-working-swifts-new-optional-values

Reason for assigning optional to new variable in conditional statement in Swift

I'm going through the swift docs, and in the optional segment, it talks about using the question mark -- ? -- to signify variables that might be nil. This can be used in an if statement to check for nil, but in the docs they assign the optional to a new variable in the conditional. Is there a reason for this?
For Example, it is presented in the docs similar to this:
// Declare an optional string (might be nil)
var optionalString: String? = "Hello"
// Assigns optionalString to new variable before checking if nil
if let string = optionalString {
println("\(optionalString) is not nil!")
}
else {
println("\(optionalString) is nil")
}
However, this runs just fine for me in tests:
var optionalString: String? = "Hello"
// Assigns optionalString to new variable before checking if nil
if optionalString {
println("\(optionalString) is not nil!")
}
else {
println("\(optionalString) is nil")
}
Question
Is there a reason to assign optionalString to a new variable string in the conditional statement?
Take a look at the section on Optional Chaining in the docs. In the example you cite, there's not much difference. But in other cases, an if-let construction lets you get at an unwrapped value that comes from a series of optional references and method calls, without using implicit unwraps that can crash your app if you haven't considered all the possible bindings for a value in a chain.
It's also useful if you want to avoid recomputing a value. You can use it in a lot of the same ways you'd use an assignment in a conditional in (Obj)C (remember if (self = [super init])).
For example, if the optional being tested comes from a computed property:
var optionalName: String? {
get {
if checkTouchID() {
return "John Appleseed"
} else {
return nil
}
}
}
var greeting = "Hello!"
if optionalName != nil {
greeting = "Hello, \(optionalName)"
}
Paste that into a playground, along with a stub implementation of checkTouchID() that returns true, and you'll immediately see in the results area that the optionalName getter is executing twice. (This would be a problem in a more realistic scenario, because you probably don't want code like this to implicitly checkTouchID() or downloadFromServer() or billApplePay() twice.) If you use an if-let construction instead, you'll only execute the getter once.
In a series of chained optionals (like if let johnsStreet = john.residence?.address?.street in the docs linked above), you don't want to rewrite the whole chain in the body of the if statement, much less recompute it.
I think the purpose of that assignment was to demonstrate the use of "let" within the if conditional clause. I don't see a meaningful difference between the provided code and your own.
From: Apple Inc. “The Swift Programming Language.” iBooks. https://itun.es/il/jEUH0.l
“If the optional value is nil, the conditional is false and the code in braces is skipped. Otherwise, the optional value is unwrapped and assigned to the constant after let, which makes the unwrapped value available inside the block of code.”