How to write a 16bit data to I2c protocol - i2c

I am making a program in which I am interfacing INA226 with atmega8 using I2C. I need to write its register with value 4127h . Following is the code I have done. when I am reading the register, I am getting 41 FF. That means I am able to write 41 but not 27. How can I do this.?
Also when I try to change the value like from 4127h to 3637h (just to check), it doesnt get change and display the older value 41 Ff.
Please help, thanks.
CODE
i2c_init();
i2c_start();
i2c_write(0b10000000); //slave address
i2c_write(0x00); //register address
i2c_write(0x41); // data
i2c_write(0x27); // data
i2c_stop();
i2c_start();
i2c_write(0b10000001);
temp1 = i2c_read(1);
temp2 = i2c_read(0);
i2c_stop();

enter code here
unsigned int_16 DATA=4127
i2c_init();
i2c_start();
i2c_write(0b10000000); //slave address
i2c_write(0x00); //register address
i2c_write((int)DATA>>8); // data OF MSB
i2c_write((int)DATA & 0XFF); // data OF LSB
i2c_stop();

Related

two wire ADC, SPI read

I use Arduino UNO (Atmega328) and a 12bit ADC component (AD7893ANZ-10), datasheet available on https://www.analog.com/media/en/technical-documentation/data-sheets/AD7893.pdf
The problem:
I tried already few different codes but the read value is wrong always, even when the SDATA pin of ADC is not connected to MISO pin of Arduino, I get the same values (See figure1 here). I simulated it in proteus(See figure2 here) and used the virtual serial monitor in proteus. The MOSI and SS pin of Arduino are not connected but I set SS pin in code to LOW and HIGH to fullfill libraries requirements. More information about the timing of ADC is added as comments into the code below. Or availabe in the datasheet. I would be thanksfull if you take a look on it due I cant figure out what I did wrong.
PS: The ADC has just to pins to communicate with SPI: 1.SDATA(slaveout) and 2.SCLK. The pin CONVST on ADC is to initiate a conversion.
#include <SPI.h>
//source of code https://www.gammon.com.au/spi
void setup() {
Serial.begin (115200);
pinMode(7, OUTPUT); // this pin is connected to convst on adc to initiate conversion
// Put SCK, MOSI, SS pins into output mode (introductions from source)
// also put SCK, MOSI into LOW state, and SS into HIGH state.
// Then put SPI hardware into Master mode and turn SPI on
pinMode(SCK, OUTPUT);
pinMode(MOSI, OUTPUT);
pinMode(SS, OUTPUT);
digitalWrite(SS, HIGH);
digitalWrite(SCK, LOW);
digitalWrite(MOSI, LOW);
SPCR = (1<<MSTR);
SPI.begin ();
SPI.beginTransaction(SPISettings(2000000, MSBFIRST, SPI_MODE1)); // set the clk frequency; take the MSB first;
//mode1 for CPOL=0 and CPHA=1 according to datasheet p.9 "CPOL bit set to a logic zero and its CPHA bit set to a logic one."
}
int transferAndWait (const byte what) //methode to read data
{
int a = SPI.transfer(what); //send zero(MOSI not connected)and read the first 8 bits and save
Serial.println (a); // show the value, in serial monitor -1
a =(a << 8); //shift the saved first 8 bits to left
Serial.println (a); // show the value, in serial monitor 255
a = a | SPI.transfer(what); //read and save the last 8 bits
Serial.println (a); // show the value, in serial monitor -256
delayMicroseconds (10);
return a;
}
void loop() {
int k;
digitalWrite(7, HIGH); //set pin high to initiate the conversion
delayMicroseconds(9); //the conversion time needed, actually 6 mikroseconds
digitalWrite(SS, LOW); // enable Slave Select to get the library working
k = transferAndWait (0); //call the method
delayMicroseconds(1);
digitalWrite(7, LOW);
digitalWrite(SS, HIGH); //disable chip select
delay(2000); //delay just to keep the overview on serial monitor
Serial.println (k); // show the value, in serial monitor -1
}
First the the return variable should be an unsigned int instead of a signed int.
Also the CONVST should only be low for a short period as conversion is started afterwards. See Timing sequence.

Would my solution work for 8-bit bus addressing using BSRR and BRR?

I have set an 8-bit bus on (PD0:PD7) on the stm32 MCU to send addresses to another chip (0:255). I am interested if a function like below would work for fast change in addresses. I could not find an example directly showing register to be equal to integer so I want to confirm it would work. I need a function to which I will give an integer value for the address (0:255) and it will set the 8 pins of the bus with this value:
void chipbus(uint16_t bus8){
GPIOD->regs->BSRR = bus8; // set all the '1' in bus8 to high
GPIOD->regs->BRR = 255-bus8; // 255-bus8 inverts the 8 bits
// BRR to set the new '1' to low
}
If this solution works, I am curious also if I change the bus to ports PD5:PD12 would my function work as:
void chipbus(uint16_t bus8){
GPIOD->regs->BSRR = bus8*32; // set all '1' in bus8 to high
// multiply by 32 to shift 5 bits/pins
GPIOD->regs->BRR = (255-bus8)*32; // 255-bus8 inverts the 8 bits
// BRR to set the new '1' to low
}
Thank you!
Yes, both should work. However, a more recognisable but equivalent formulation would be:
void chipbus(uint16_t bus8) {
GPIOD->regs->BSRR = bus8; // set all the '1' in bus8 to high
GPIOD->regs->BRR = (~bus8) & 0xFF; // inverts the 8 bits // BRR to set the new '1' to low
}
void chipbus(uint16_t bus8) {
GPIOD->regs->BSRR = bus8<<5; // set all '1' in bus8 to high, shift 5 bits
GPIOD->regs->BRR = ((~bus8)&0xFF)<<5; // inverts the 8 bits
}
But, there is an even faster way. BSRR is a 32bit register than can both set and reset. You can combine the two write accesses into one:
void chipbus(uint16_t bus8) {
GPIOD->regs->BSRR =
(bus8<<5) | (((~bus8) & 0xFF) << (16+5));
}
Happy bit-fiddling!
Yes, it'd definitely work. However, as others have noted, it's advisable to set the outputs in a single operation.
Taking advantage of the full 32 bit BSRR register, it can be done without inverting the data bits:
GPIOD->regs->BSRR = bus8 | (0xFF << 16);
or
GPIOD->regs->BSRR = (bus8 << 5) | (0xFF << (16 + 5));
because BSRR has the functionality to set some bits and reset some others in a single write operation, and when both the set and reset bits for a particular pin is set, the output becomes 1.
I wouldn't recommend using this approach. Writing to BSRR and BRR as two separate steps means that the bus will transition through an unintended state where some bits are still set from the previous value.
Instead, consider writing directly to the GPIO output data register (ODR). If you need to preserve the original value of the upper bits in the port, you can do that on the CPU side:
GPIOD->regs->ODR = (GPIOD->regs->ODR & 0xff00) | (bus8 & 0x00ff);

STM32 SPI data is sent the reverse way

I've been experimenting with writing to an external EEPROM using SPI and I've had mixed success. The data does get shifted out but in an opposite manner. The EEPROM requires a start bit and then an opcode which is essentially a 2-bit code for read, write and erase. Essentially the start bit and the opcode are combined into one byte. I'm creating a 32-bit unsigned int and then bit-shifting the values into it. When I transmit these I see that the actual data is being seen first and then the SB+opcode and then the memory address. How do I reverse this to see the opcode first then the memory address and then the actual data. As seen in the image below, the data is BCDE, SB+opcode is 07 and the memory address is 3F. The correct sequence should be 07, 3F and then BCDE (I think!).
Here is the code:
uint8_t mem_addr = 0x3F;
uint16_t data = 0xBCDE;
uint32_t write_package = (ERASE << 24 | mem_addr << 16 | data);
while (1)
{
/* USER CODE END WHILE */
/* USER CODE BEGIN 3 */
HAL_SPI_Transmit(&hspi1, &write_package, 2, HAL_MAX_DELAY);
HAL_Delay(10);
}
/* USER CODE END 3 */
It looks like as your SPI interface is set up to process 16 bit halfwords at a time. Therefore it would make sense to break up the data to be sent into 16 bit halfwords too. That would take care of the ordering.
uint8_t mem_addr = 0x3F;
uint16_t data = 0xBCDE;
uint16_t write_package[2] = {
(ERASE << 8) | mem_addr,
data
};
HAL_SPI_Transmit(&hspi1, (uint8_t *)write_package, 2, HAL_MAX_DELAY);
EDIT
Added an explicit cast. As noted in the comments, without the explicit cast it wouldn't compile as C++ code, and cause some warnings as C code.
You're packing your information into a 32 bit integer, on line 3 of your code you have the decision about which bits of data are placed where in the word. To change the order you can replace the line with:
uint32_t write_package = ((data << 16) | (mem_addr << 8) | (ERASE));
That is shifting data 16 bits left into the most significant 16 bits of the word, shifting mem_addr up by 8 bits and or-ing it in, and then adding ERASE in the least significant bits.
Your problem is the Endianness.
By default the STM32 uses little edian so the lowest byte of the uint32_t is stored at the first adrress.
If I'm right this is the declaration if the transmit function you are using:
HAL_StatusTypeDef HAL_SPI_Transmit(SPI_HandleTypeDef *hspi, uint8_t *pData, uint16_t Size, uint32_t Timeout)
It requires a pointer to uint8_t as data (and not a uint32_t) so you should get at least a warning if you compile your code.
If you want to write code that is independent of the used endianess, you should store your data into an array instead of one "big" variable.
uint8_t write_package[4];
write_package[0] = ERASE;
write_package[1] = mem_addr;
write_package[2] = (data >> 8) & 0xFF;
write_package[3] = (data & 0xFF);

PCI configuration space registers - write values

I am developing a network driver (RTL8139) for a selfmade operating system and have problems in writing values to the PCI configuration space registers.
I want to change the value of the interrupt line (offset 0x3c) to get another IRQ number and enable bus master (set bit 2) of the command register (offset 0x04).
When I read back the values I see that my values are correctly written. But instead of using the new IRQ number (in my case 6) it uses the old value (11).
Also bus master for DMA is not working (my packets I would like to send have the correct size (set by IO-Port) but they have no content (all values just 0, transceive buffer is on physical memory and has non zero values). This always worked with my code as expected after I double checked the physical address. I need this to let the network controller access to my physical memory where my buffers for receive/transceive are. (Bus mastering needed for RTL8139)
Do I have to do something else to confirm my changes to the PCI-device?
As emulator I use qemu.
For reading/writing I wrote the following functions:
uint16_t pci_read_word(uint16_t bus, uint16_t slot, uint16_t func, uint16_t offset)
{
uint64_t address;
uint64_t lbus = (uint64_t)bus;
uint64_t lslot = (uint64_t)slot;
uint64_t lfunc = (uint64_t)func;
uint16_t tmp = 0;
address = (uint64_t)((lbus << 16) | (lslot << 11) |
(lfunc << 8) | (offset & 0xfc) | ((uint32_t)0x80000000));
outportl (0xCF8, address);
tmp = (uint16_t)((inportl (0xCFC) >> ((offset & 2) * 8)) & 0xffff);
return (tmp);
}
uint16_t pci_write_word(uint16_t bus, uint16_t slot, uint16_t func, uint16_t offset, uint16_t data)
{
uint64_t address;
uint64_t lbus = (uint64_t)bus;
uint64_t lslot = (uint64_t)slot;
uint64_t lfunc = (uint64_t)func;
uint32_t tmp = 0;
address = (uint64_t)((lbus << 16) | (lslot << 11) |
(lfunc << 8) | (offset & 0xfc) | ((uint32_t)0x80000000));
outportl (0xCF8, address);
tmp = (inportl (0xCFC));
tmp &= ~(0xFFFF << ((offset & 0x2)*8)); // reset the word at the offset
tmp |= data << ((offset & 0x2)*8); // write the data at the offset
outportl (0xCF8, address); // set address again just to be sure
outportl(0xCFC,tmp); // write data
return pci_read_word(bus,slot,func,offset); // read back data;
}
I hope somebody can help me.
The "interrupt line" field (at offset 0x03C in PCI configuration space) literally does nothing.
The Full Story
PCI cards could use up to 4 "PCI IRQs" at the PCI slot; and use them in order (so if you have ten PCI cards that all have one IRQ, then they'll all use the first PCI IRQ at the slot).
There's a tricky "barber pole" arrangement to connect "PCI IRQ at the slot" to "PCI IRQ at the host controller" that is designed to reduce IRQ sharing. If you have ten PCI cards that all have one IRQ, then they'll all use the first PCI IRQ at the slot, but the first IRQ at each PCI slot will be connected to a different PCI IRQ at the host controller. All of this is hard-wired and can not be changed by software.
To complicate things more; to connect PCI IRQs (from the PCI host controller) to the legacy PIC chips, a special "PCI IRQ router" was added. In theory the configuration of the "PCI IRQ router" can be changed by software (if you can find the documentation that describes a table that describes the location, capabilities and restrictions of the "PCI IRQ router").
Without the firmware's help it'd be impossible for an OS to figure out which PIC chip input a PCI device actually uses. For that reason, the firmware figures it out during boot and then stores "PIC chip input number" somewhere for the OS to find. That is what the "interrupt line" register is - it's just an 8-bit register that can store anything you like (that the BIOS/firmware uses to store "PIC chip input number").

STM32F4 : EEPROM 25LC256 management through SPI

I am trying to drive a EEPROM Chip 25LC256 with a STM32F469I-DISCO but can't achieve it.
I have tried to make my own function with HAL API bases but apparently something is wrong : I don't know if I write datas on the chip since I can't read it. Let me explain more.
So my chip is a DIP 25LC256 (DS is above is you wish). PINs HOLD and WP of EEPROM are tied to VCC (3.3V). PIN CS is connected to PH6 (ARD_D10 on board) and is managed by the software. PIN SI and PIN SO are respectively connected to PB15 (ARD_D11) and PB14 (ARD_D12) with the right alternate function (GPIO_AF5_SPI2). PIN SCK is also connected to PD3 (ADR_D13).
Here is my SPI configuration code :
EEPROM_StatusTypeDef ConfigurationSPI2(SPI_HandleTypeDef *spi2Handle){
__HAL_RCC_GPIOB_CLK_ENABLE();
__HAL_RCC_GPIOD_CLK_ENABLE();
__HAL_RCC_GPIOH_CLK_ENABLE();
GPIO_InitTypeDef gpioInit;
//// SCK [PD3]
gpioInit.Pin = GPIO_PIN_3;
gpioInit.Mode = GPIO_MODE_AF_PP;
gpioInit.Pull = GPIO_PULLDOWN;
gpioInit.Speed = GPIO_SPEED_FREQ_HIGH;
gpioInit.Alternate = GPIO_AF5_SPI2;
HAL_GPIO_Init(GPIOD, &gpioInit);
//// MOSI [PB15]
gpioInit.Pin = GPIO_PIN_15;
gpioInit.Pull = GPIO_PULLUP;
HAL_GPIO_Init(GPIOB, &gpioInit);
//// MISO [PB14]
gpioInit.Pin = GPIO_PIN_14;
gpioInit.Pull = GPIO_NOPULL;
HAL_GPIO_Init(GPIOB, &gpioInit);
//// CS [PH6]
gpioInit.Pin = GPIO_PIN_6;
gpioInit.Mode = GPIO_MODE_OUTPUT_PP;
gpioInit.Speed = GPIO_SPEED_FREQ_HIGH;
HAL_GPIO_Init(GPIOH, &gpioInit);
HAL_GPIO_WritePin(GPIOH, GPIO_PIN_6, GPIO_PIN_SET);
//// SPI2
__HAL_RCC_SPI2_CLK_ENABLE();
spi2Handle->Instance = SPI2;
spi2Handle->Init.Mode = SPI_MODE_MASTER;
spi2Handle->Init.Direction = SPI_DIRECTION_2LINES;
spi2Handle->Init.DataSize = SPI_DATASIZE_8BIT;
spi2Handle->Init.CLKPolarity = SPI_POLARITY_LOW;
spi2Handle->Init.CLKPhase = SPI_PHASE_1EDGE;
spi2Handle->Init.NSS = SPI_NSS_SOFT;
spi2Handle->Init.BaudRatePrescaler = SPI_BAUDRATEPRESCALER_16;
spi2Handle->Init.FirstBit = SPI_FIRSTBIT_MSB;
spi2Handle->Init.TIMode = SPI_TIMODE_DISABLE;
spi2Handle->Init.CRCCalculation = SPI_CRCCALCULATION_DISABLE ;
spi2Handle->Init.CRCPolynomial = 7;
if(HAL_SPI_Init(spi2Handle) != HAL_OK){
return EEPROM_ERROR;
}
return EEPROM_OK;
}
And two functions allowing respectively (and theorically) to WRITE and READ into the the chip :
Write Function :
EEPROM_StatusTypeDef WriteEEPROM(SPI_HandleTypeDef *spi2Handle, uint8_t *txBuffer, uint16_t size, uint16_t addr){
uint8_t addrLow = addr & 0xFF;
uint8_t addrHigh = (addr >> 8);
uint8_t wrenInstruction = WREN_EEPROM; // Value : 0x06
uint8_t buffer[32] = {WRITE_EEPROM, addrHigh, addrLow}; //Value : 0x02
for(uint i = 0 ; i < size ; i++){
buffer[3+i] = txBuffer[i];
}
HAL_GPIO_WritePin(GPIOH, GPIO_PIN_6, RESET);
if(HAL_SPI_Transmit(spi2Handle, &wrenInstruction, 1, TIMEOUT_EEPROM) != HAL_OK){
return EEPROM_ERROR;;
}
HAL_GPIO_WritePin(GPIOH, GPIO_PIN_6, SET);
HAL_GPIO_WritePin(GPIOH, GPIO_PIN_6, RESET);
if(HAL_SPI_Transmit(spi2Handle, buffer, (size + 3), TIMEOUT_EEPROM) != HAL_OK){
return EEPROM_ERROR;
}
HAL_GPIO_WritePin(GPIOH, GPIO_PIN_6, SET);
return EEPROM_OK;
}
Read Function :
EEPROM_StatusTypeDef ReadEEPROM(SPI_HandleTypeDef *spi2Handle, uint8_t *rxBuffer, uint16_t size, uint16_t addr){
uint8_t addrLow = addr & 0xFF;
uint8_t addrHigh = (addr >> 8);
uint8_t txBuffer[3] = {READ_EEPROM, addrHigh, addrLow};
HAL_GPIO_WritePin(GPIOH, GPIO_PIN_6, RESET);
HAL_SPI_Transmit(spi2Handle, txBuffer, 3, TIMEOUT_EEPROM);
HAL_SPI_Receive(spi2Handle, rxBuffer, size, TIMEOUT_EEPROM);
HAL_GPIO_WritePin(GPIOH, GPIO_PIN_6, SET);
return EEPROM_OK;
}
I know my function are not very "beautiful" but it was a first attempt. In my main, I have tried in the first place to write into the chip the data "0x05" at the 0x01 adress then to read this data back :
uint8_t bufferEEPROM[1] = {5};
uint8_t bufferEEPROM2[1] = {1};
WriteEEPROM(&spi2Handle, bufferEEPROM, 1, 0x01);
ReadEEPROM(&spi2Handle, bufferEEPROM2, 1, 0x01);
I have an oscilloscope so since it didn't work (monitoring with STM Studio) I visualized the CLK and SI PINs then CLK and SO PINs (can only see two channel at the same time) :
As you can see, with the first picture that shows CLK (yellow) and SI (or MOSI) in blue, I have all the data expected : The WRite ENable instruction then the WRITE instruction. Following the ADDRESS, then the DATA.
After that, the Read Function starts. First the READ instruction and the ADDRESS where I want to fetch the data. The last 8 bits are supposed to be the data stored at the address (0x01 in this case). Something happens on SI PIN but I guess this is because the HAL_SPI_Receive() function actually calls HAL_SPI_TransmitReceive() with my array bufferEEPROM2 as parameter (that's why we can se 0b00000001). And so it is because of my SPI configuration parameter (Full-duplex).
Anyway, theorically I am supposed to see 0b00000101 on SO PIN but as you can see in the second picture.... nothing.
I have tried to change gpioInit.Pull for SO PIN on PULLUP and PULLDOWN but nothing changed. NOPULL is because that's the last thing I have tried.
The thing is I don't know where to start. My transmission seems to work (but is it actually ?). Is there anything wrong with my initialization ? Acutally my main question would be : why I don't receive any data from my EEPROM ?
Many thanks !
Write operations need some time to complete (your datasheet says 5 ms on page 4), during that time no operation other than read status is possible. Try polling the status register with the RDSR (0x05) opcode to find out when it becomes ready (bit 0). You could also check the status (bit 1) before and after issuing WREN to see if it was successful.
So the problem is now solved. Here are the improvements :
There was actually two issues. The first one and certainly the most important is, as berendi stated, a timing issue. In my WRITE function I didn't let the time for the EEPROM to complete its write cycle (5 ms on datasheet). I added the following code line at the end of all my WRITE functions :
HAL_Delay(10); //10 ms wait for the EEPROM to complete the write cycle
The delay value could be less I think if time is preicous (theorically 5ms). I didn't test below 10 ms though. An other thing. With the oscilloscope I also saw that my Chip Select used to went HIGH in the middle of my last clock edge. I could not say if this could also imply some issues since that's a thing I solved in the first place by adding a code line before HAl_Delay(10). All my SPI transmission functions finishes this way now :
while(HAL_GPIO_ReadPin(CLK_PORT, CLK_PIN) == GPIO_PIN_SET){
}
HAL_GPIO_WritePin(CS_PORT, CS_PIN, GPIO_PIN_SET);
HAL_Delay(10);
This way I have the proper pattern and I can write in the EEPROM and read back what I wrote.
NB : A last thing that made me goes deeper into my misunderstanding of the events : since my write functions didn't work, I focused on STATUS REGISTER write and read function (in order to solve this step by step). The write function didn't work either and in fact it was because the WRENbit wasn't set. I though (wrong one) that the fact to write into the STATUS REGISTER didn't ask also to set WREN like the WRITE functions into the memory ask to. Actually, it is also necessary.
Thanks for the help !