How to handle cross cutting concerns the Scala way - scala

I am reading online about cross cutting concerns since I just implemented Log4j into my code. Some people are saying using AspectJ is okay, while others point out that it breaks functional programming. That mixins are Scala's solution for cross cutting concerns.
However, I cringe when I think I will extend a trait to an object/ class that is not related itself.
e.g. new Database with Logger
Here Logger has nothing to do with Database, but its how to mixing to provide logging. I would prefer to do it the Scala way, so I want to find out this is what people mean by mixins.
Can someone please show me a quick example of how to go about this in Scala?

This is a big topic with lots of potential "correct" answers. My personal favourite would be using either "by name parameters" or higher order functions.
A a very simple example of this:
object Logging {
def logCall[T](name: String)(block: => T): T = {
log.info(s"Invoking: $name")
block
}
}
Which would allow you to apply it both in an object that itself knows about the cross cutting concern (something like annotating wrapping a method call with something in java):
class DB {
import Logging._
def insert(item: Something) = logCall("insert") {
???
}
}
Or at the call site:
import Logging._
def businessLogic() {
val user = ???
val result = logCall("insert user")(DB.insert(user))
println(result)
}
The nice thing with this is that it is very explicit and self explanatory (which, again, are things you might value high or not).

Related

Mixing traits at runtime dynamically

Question: Does a dependable Scala library exist that provides ability to decorate a class dynamically at runtime object creation? (This is a personal learning exercise)
To be more detailed, I've explored this issue in several ways. I am aware this can be done (to some degree) using macros in Scala but I believe the compiler would have to build vast trees of the combinations involved and I'm not sure that fits the concept of truly dynamic at runtime. I've also found code snippets that use scala runtime reflection, but the authors note instability.
I have ideas of how to do this myself using TypeTags and I think it would be a great learning exercise, but many issues arise that are of course compiler related that I would be juggling:
dependencies
variance
illogical combinations or circular logic
hierarchies
container types
If this idea is better suited for another programming language, or abandoned in Scala I would certainly be interested to hear what other programming languages work well. (Comments appreciated) Thanks for your time.
class Animal(val name:String)
class Dog(name:String) extends Animal(name)
trait Talks extends Animal {
def speak():Unit ="Hello from "
}
trait Counts {
def counts(x:Int):Unit = for (i <- 0 to x) println(x)
}
trait Walks {
def walk():Double = 22/7
}
object RuntimeTraits extends App {
def randomAnimal():Animal = ??? /*
in theory this would return a Dog, or Animal that has some (or none) of traits
Talks, Counts, Walks, etc. .. ref Dr.Moreau ;)
*/
}

Extracting the complete call graph of a scala project (tough one)

I would like to extract from a given Scala project, the call graph of all methods which are part of the project's own source.
As I understand, the presentation compiler doesn't enable that, and it requires going down all the way down to the actual compiler (or a compiler plugin?).
Can you suggest complete code, that would safely work for most scala projects but those that use the wackiest dynamic language features? for the call graph, I mean a directed (possibly cyclic) graph comprising class/trait + method vertices where an edge A -> B indicates that A may call B.
Calls to/from libraries should be avoided or "marked" as being outside the project's own source.
EDIT:
See my macro paradise derived prototype solution, based on #dk14's lead, as an answer below. Hosted on github at https://github.com/matanster/sbt-example-paradise.
Here's the working prototype, which prints the necessary underlying data to the console as a proof of concept. http://goo.gl/oeshdx.
How This Works
I have adapted the concepts from #dk14 on top boilerplate from macro paradise.
Macro paradise lets you define an annotation that will apply your macro over any annotated object in your source code. From there you have access to the AST that the compiler generates for the source, and scala reflection api can be used to explore the type information of the AST elements. Quasiquotes (the etymology is from haskell or something) are used to match the AST for the relevant elements.
More about Quasiquotes
The generally important thing to note is that quasiquotes work over an AST, but they are a strange-at-first-glance api and not a direct representation of the AST (!). The AST is picked up for you by paradise's macro annotation, and then quasiquotes are the tool for exploring the AST at hand: you match, slice and dice the abstract syntax tree using quasiquotes.
The practical thing to note about quasiquotes is that there are fixed quasiquote templates for matching each type of scala AST - a template for a scala class definition, a template for a scala method definition, etc. These tempaltes are all provided here, making it very simple to match and deconstruct the AST at hand to its interesting constituents. While the templates may look daunting at first glance, they are mostly just templates mimicking the scala syntax, and you may freely change the $ prepended variable names within them to names that feel nicer to your taste.
I still need to further hone the quasiquote matches I use, which currently aren't perfect. However, my code seems to produce the desired result for many cases, and honing the matches to 95% precision may be well doable.
Sample Output
found class B
class B has method doB
found object DefaultExpander
object DefaultExpander has method foo
object DefaultExpander has method apply
which calls Console on object scala of type package scala
which calls foo on object DefaultExpander.this of type object DefaultExpander
which calls <init> on object new A of type class A
which calls doA on object a of type class A
which calls <init> on object new B of type class B
which calls doB on object b of type class B
which calls mkString on object tags.map[String, Seq[String]](((tag: logTag) => "[".+(Util.getObjectName(tag)).+("]")))(collection.this.Seq.canBuildFrom[String]) of type trait Seq
which calls map on object tags of type trait Seq
which calls $plus on object "[".+(Util.getObjectName(tag)) of type class String
which calls $plus on object "[" of type class String
which calls getObjectName on object Util of type object Util
which calls canBuildFrom on object collection.this.Seq of type object Seq
which calls Seq on object collection.this of type package collection
.
.
.
It is easy to see how callers and callees can be correlated from this data, and how call targets outside the project's source can be filtered or marked out. This is all for scala 2.11. Using this code, one will need to prepend an annotation to each class/object/etc in each source file.
The challenges that remain are mostly:
Challenges remaining:
This crashes after getting the job done. Hinging on https://github.com/scalamacros/paradise/issues/67
Need to find a way to ultimately apply the magic to entire source files without manually annotating each class and object with the static annotation. This is rather minor for now, and admittedly, there are benefits for being able to control classes to include and ignore anyway. A preprocessing stage that implants the annotation before (almost) every top level source file definition, would be one nice solution.
Honing the matchers such that all and only relevant definitions are matched - to make this general and solid beyond my simplistic and cursory testing.
Alternative Approach to Ponder
acyclic brings to mind a quite opposite approach that still sticks to the realm of the scala compiler - it inspects all symbols generated for the source, by the compiler (as much as I gather from the source). What it does is check for cyclic references (see the repo for a detailed definition). Each symbol supposedly has enough information attached to it, to derive the graph of references that acyclic needs to generate.
A solution inspired by this approach may, if feasible, locate the parent "owner" of every symbol rather than focus on the graph of source files connections as acyclic itself does. Thus with some effort it would recover the class/object ownership of each method. Not sure if this design would not computationally explode, nor how to deterministically obtain the class encompassing each symbol.
The upside would be that there is no need for macro annotations here. The downside is that this cannot sprinkle runtime instrumentation as the macro paradise rather easily allows, which could be at times useful.
It requires more precise analysis, but as a start this simple macro will print all possible applyies, but it requires macro-paradise and all traced classess should have #trace annotation:
class trace extends StaticAnnotation {
def macroTransform(annottees: Any*) = macro tracerMacro.impl
}
object tracerMacro {
def impl(c: Context)(annottees: c.Expr[Any]*): c.Expr[Any] = {
import c.universe._
val inputs = annottees.map(_.tree).toList
def analizeBody(name: String, method: String, body: c.Tree) = body.foreach {
case q"$expr(..$exprss)" => println(name + "." + method + ": " + expr)
case _ =>
}
val output = inputs.head match {
case q"class $name extends $parent { ..$body }" =>
q"""
class $name extends $parent {
..${
body.map {
case x#q"def $method[..$tt] (..$params): $typ = $body" =>
analizeBody(name.toString, method.toString, body)
x
case x#q"def $method[..$tt]: $typ = $body" =>
analizeBody(name.toString, method.toString, body)
x
}
}
}
"""
case x => sys.error(x.toString)
}
c.Expr[Any](output)
}
}
Input:
#trace class MyF {
def call(param: Int): Int = {
call2(param)
if(true) call3(param) else cl()
}
def call2(oaram: Int) = ???
def cl() = 5
def call3(param2: Int) = ???
}
Output (as compiler's warnings, but you may output to file intead of println):
Warning:scalac: MyF.call: call2
Warning:scalac: MyF.call: call3
Warning:scalac: MyF.call: cl
Of course, you might want to c.typeCheck(input) it (as now expr.tpe on found trees is equals null) and find which class this calling method belongs to actually, so the resulting code may not be so trivial.
P.S. macroAnnotations give you unchecked tree (as it's on earlier compiler stage than regular macroses), so if you want something typechecked - the best way is surround the piece of code you want to typecheck with call of some your regular macro, and process it inside this macro (you can even pass some static parameters). Every regular macro inside tree produced by macro-annotation - will be executed as usual.
Edit
The basic idea in this answer was to bypass the (pretty complex) Scala compiler completely, and extract the graph from the generated .class files in the end. It appeared that a decompiler with sufficiently verbose output could reduce the problem to basic text manipulation. However, after a more detailed examination it turned out that this is not the case. One would just get back to square one, but with obfuscated Java code instead of the original Scala code. So this proposal does not really work, although there is some rationale behind working with the final .class files instead of intermediate structures used internally by the Scala compiler.
/Edit
I don't know whether there are tools out there that do it out of the box (I assume that you have checked that). I have only a very rough idea what the presentation compiler is. But if all that you want is to extract a graph with methods as nodes and potential calls of methods as edges, I have a proposal for a quick-and-dirty solution. This would work only if you want to use it for some sort of visualization, it doesn't help you at all if you want to perform some clever refactoring operations.
In case that you want to attempt building such a graph-generator yourself, it might turn out much simpler than you think. But for this, you need to go all the way down, even past the compiler. Just grab your compiled .class files, and use something like the CFR java decompiler on it.
When used on a single compiled .class file, CFR will generate list of classes that the current class depends on (here I use my little pet project as example):
import akka.actor.Actor;
import akka.actor.ActorContext;
import akka.actor.ActorLogging;
import akka.actor.ActorPath;
import akka.actor.ActorRef;
import akka.actor.Props;
import akka.actor.ScalaActorRef;
import akka.actor.SupervisorStrategy;
import akka.actor.package;
import akka.event.LoggingAdapter;
import akka.pattern.PipeToSupport;
import akka.pattern.package;
import scala.Function1;
import scala.None;
import scala.Option;
import scala.PartialFunction;
...
(very long list with all the classes this one depends on)
...
import scavenger.backend.worker.WorkerCache$class;
import scavenger.backend.worker.WorkerScheduler;
import scavenger.backend.worker.WorkerScheduler$class;
import scavenger.categories.formalccc.Elem;
Then it will spit out some horribly looking code, that might look like this (small excerpt):
public PartialFunction<Object, BoxedUnit> handleLocalResponses() {
return SimpleComputationExecutor.class.handleLocalResponses((SimpleComputationExecutor)this);
}
public Context provideComputationContext() {
return ContextProvider.class.provideComputationContext((ContextProvider)this);
}
public ActorRef scavenger$backend$worker$MasterJoin$$_master() {
return this.scavenger$backend$worker$MasterJoin$$_master;
}
#TraitSetter
public void scavenger$backend$worker$MasterJoin$$_master_$eq(ActorRef x$1) {
this.scavenger$backend$worker$MasterJoin$$_master = x$1;
}
public ActorRef scavenger$backend$worker$MasterJoin$$_masterProxy() {
return this.scavenger$backend$worker$MasterJoin$$_masterProxy;
}
#TraitSetter
public void scavenger$backend$worker$MasterJoin$$_masterProxy_$eq(ActorRef x$1) {
this.scavenger$backend$worker$MasterJoin$$_masterProxy = x$1;
}
public ActorRef master() {
return MasterJoin$class.master((MasterJoin)this);
}
What one should notice here is that all methods come with their full signature, including the class in which they are defined, for example:
Scheduler.class.schedule(...)
ContextProvider.class.provideComputationContext(...)
SimpleComputationExecutor.class.fulfillPromise(...)
SimpleComputationExecutor.class.computeHere(...)
SimpleComputationExecutor.class.handleLocalResponses(...)
So if you need a quick-and-dirty solution, it might well be that you could get away with just ~10 lines of awk,grep,sort and uniq wizardry to get nice adjacency lists with all your classes as nodes and methods as edges.
I've never tried it, it's just an idea. I cannot guarantee that Java decompilers work well on Scala code.

Writing macros which generate statements

With intention of reducing the boilerplate for the end-user when deriving instances of a certain typeclass (let's take Showable for example), I aim to write a macro, which will autogenerate the instance names. E.g.:
// calling this:
Showable.derive[Int]
Showable.derive[String]
// should expand to this:
// implicit val derivedShowableInstance0 = new Showable[Int] { ... }
// implicit val derivedShowableInstance1 = new Showable[String] { ... }
I tried to approach the problem the following way, but the compiler complained that the expression should return a < no type > instead of Unit:
object Showable {
def derive[a] = macro Macros.derive[a]
object Macros {
private var instanceNameIndex = 0
def derive[ a : c.WeakTypeTag ]( c : Context ) = {
import c.universe._
import Flag._
val newInstanceDeclaration = ...
c.Expr[Unit](
ValDef(
Modifiers(IMPLICIT),
newTermName("derivedShowableInstance" + nameIndex),
TypeTree(),
newInstanceDeclaration
)
)
}
}
}
I get that a val declaration is not exactly an expression and hence Unit might not be appropriate, but then how to make it right?
Is this at all possible? If not then why, will it ever be, and are there any workarounds?
Yes, that's right. Declarations/definitions aren't expressions, so they need to be wrapped into Unit-returning blocks to become ones. Typically Scala does this automatically, but in this particular case you need to do it yourself.
However if you wrap a definition in a block, then it becomes invisible from the outside. That's the limitation of the current macro system that strictly follows the metaphor of "macro application is very much similar to a typed function call". Function calls don't bring new members into scope, so neither do def macros - both for technical and philosophical reasons. As shown in the example #3 of my recent "What Are Macros Good For?" talk, by using structural types def macros can work around this limitation, but this doesn't look particularly related to your question, so I'll omit the details.
On the other hand, there are some ideas how to overcome this limitation with new macro flavors. Macro annotations show that it's technically feasible for the macro engine to hook into new member creation, but we'd like to get more experience with macro annotations before bringing them into trunk. Some details about this can be found in my "Philosophy of Scala Macros" presentation. This can be useful in your situation, but I still won't go into details, because I think there's a much better solution for this particular case (feel free to ask for elaboration in comments, though!).
What I'd like to recommend you is to use materialization as described in http://docs.scala-lang.org/overviews/macros/implicits.html. With materializing macros you can automatically generate type class instances for the user without having the user write any code at all. Would that fit your use case?

Are there any means in Scala to split a class code into many files?

There are 2 reasons for me to ask:
1. I'd like a better code fragmentation to facilitate version control on per-function level
2. I struggle from some attention deficit disorder and it is hard for me to work with long pieces of code such as big class files
To address these problems I used to use include directives in C++ and partial class definitions and manually-definable foldable regions in C#. Are there any such things available in Scala 2.8?
I've tried to use editor-fold tag in NetBeans IDE, but it does not work in Scala editor unfortunately :-(
UPDATE: As far as I understand, there are no such facilities in Scala. So I'd like to ask: someone who has any connection to Scala authors, or an account on their Bugzilla (or whatever they use), please, suggest them an idea - they should probably think of introducing something of such (I was fascinated by C# regions and partial classes for example, and plain old includes also look like a convenient tool to have) to make Scala even more beautiful through laconicity, IMHO.
How about doing it with traits? You define it like this:
trait Similarity
{
def isSimilar(x: Any): Boolean
def isNotSimilar(x: Any): Boolean = !isSimilar(x)
}
...and then you use it like so:
class Point(xc: Int, yc: Int) extends Similarity
{
var x: Int = xc
var y: Int = yc
def isSimilar(obj: Any) =
obj.isInstanceOf[Point] &&
obj.asInstanceOf[Point].x == x
}
If the class Point were bigger, you could split it further into traits, resulting in the division that you want. Please note, however, that I don't think this is advisable, as it will make it very difficult to get a good overview of your code, unless you already know it by heart. If you can break it in a nice way, however, you might be able to get some nice, reusable blocks out of it, so in the end it might still be worth doing.
Best of luck to you!
//file A.scala
trait A { self: B =>
....
}
//file B.scala
trait B { self: A =>
....
}
//file C.scala
class C extends A with B
I suggest to read white paper by Martin at this link. In this white paper 'Case Sudy: The Scala Compiler' chapter will give you idea about how you can achieve component based design having code in several separate files.
Scala code folding works properly in IDEA.
The version control tools I work with (bzr or git, mostly) have no trouble isolating changes line-by-line. What use case do you have--that's common enough to worry about--where line-level isolation (which allows changes to independent methods to be merged without user intervention) is not enough?
Also, if you can't focus on something as large as one class with many methods, use more classes. A method generally requires you to know what the other methods are, what the fields are, and so on. Having that split across separate files is just asking for trouble. Instead, encapsulate your problem in a different way so you can work with smaller self-contained chunks at a time.

How should I organize implicits in my Scala application?

Having written a few scala tools, I'm trying to come to grips with the best way to arrange my code - particularly implicits. I have 2 goals:
Sometimes, I want to be able to import just the implicits I ask for.
Othertimes, I want to just import everything.
To avoid duplicating the implicits, I've come up with this structure (similar to the way scalaz is arranged):
case class StringW(s : String) {
def contrived = s + "?"
}
trait StringWImplicits {
implicit def To(s : String) = StringW(s)
implicit def From(sw : StringW) = sw.s
}
object StringW extends StringWImplicits
// Elsewhere on Monkey Island
object World extends StringWImplicits with ListWImplicits with MoreImplicits
This allows me to just
import StringW._ // Selective import
or (in most cases)
import World._. // Import everything
How does everyone else do it?
I think that implicit conversions are dangerous if you don't know where they are coming from. In my case, I put my implicits in a Conversions class and import it as close to the use as possible
def someMethod(d: Date) ; Unit {
import mydate.Conversions._
val tz = TimeZone.getDefault
val timeOfDay = d.getTimeOfDay(tz) //implicit used here
...
}
I'm not sure I like "inheriting" implicits from various traits for the same reason it was considered bad Java practice to implement an interface so you could use its constants directly (static imports are preferred instead).
I usually had implicit conversions in an object which clearly signals that what it is imported is an implicit conversion.
For example, if I have a class com.foo.bar.FilthyRichString, the implicit conversions would go into com.foo.bar.implicit.FilthyRichStringImplicit. I know the names are a bit long, but that's why we have IDEs (and Scala IDE support is getting better). The way I do this is that I feel it is important that all the implicit conversions can be clearly viewed in a 10 second code review. I could look at the following code:
// other imports
import com.foo.bar.FilthyRichString
import com.foo.bar.util.Logger
import com.foo.bar.util.FileIO
import com.foo.bar.implicits.FilthyRichStringImplicit._
import com.foo.bar.implicits.MyListImplicit._
// other implicits
and at a glance see all the implicit conversions that are active in this source file. They would also be all gathered together, if you use the convention that imports are grouped by packages, with a new line between different packages.
Along the lines of the same argument, I wouldn't like a catch-all object that holds all of the implicit conversions. In a big project, would you really use all of the implicit conversions in all your source files? I think that doing that means very tight coupling between different parts of your code.
Also, a catch-all object is not very good for documentation. In the case of explicitly writing all the implicit conversions used in a file, one can just look at your import statements and straight away jump to the documentation of the implicit class. In the case of a catch-all object, one would have to look at that object (which in a big project might be huge) and then search for the implicit conversion they are after.
I agree with oxbow_lakes that having implicit conversion in traits is bad because of the temptation of inheriting from it, which is, as he said, bad practice. Along those lines, I would make the objects holding the implicit conversions final just to avoid the temptation altogether. His idea of importing them as close to the use as possible is very nice as well, if implicit conversions are just used sparingly in the code.
-- Flaviu Cipcigan