Does kerberos encrypt only the authentication process or all client communications?
I was under the impression it was like a VPN for the LAN.
So that all LAN communications are encrypted. Just like all internet communications are encrypted with a VPN.
Regards
Aubrey
Kerberos is quite capable of encrypting traffic between client and server, but depending on exactly how kerberos is used in the application, it may or may not be using the kerberos session keys to encrypt the traffic.
The kerberos protocol provides the means to exchange a session key that can be used to encrypt message traffic after the initial authentication exchange. Encrypted message exchange is generally the default for protocols that actually use GSSAPI. See gss_wrap documentation
GSSAPI is a generalized API for doing secure network applications. Kerberos is the mostly commonly used driver underneath GSSAPI.
If the application does not use GSSAPI, or the native kerberos messaging libraries, then it is likely using TLS to encrypt the traffic or the traffic is not encrypted.
Kerberos message encryption was designed to support relatively long lived tcp based client/server applications ( think telnet or ssh ). The API does not always map well to the way current applications are architected. Kerberos support is often bolted on well after the application is under construction
and is only used for authentication.
Kerberos is an distributed service that is generally used for secure authentication only. It does neither ensure that a user has the required permissions to access a resource (that would be Authorization) however it may be used to encrypt arbitrary data. As per RFC 3961 "Encryption and Checksum Specifications" which extends and correct aspects of RFC 1510 the Kerberos protocol provides confidentiality and integrity services.
While Kerberos can be used to encrypt information passed between authenticated peers in many cases it only performs the authentication step. Thus, you will find that Kerberos is used as component in a secure environment to ensure a secure authentication with other components and protocols handling the authorization and the secure transport.
In the end, it heavily depends on your usa-case to determine if the tradeoffs between using Kerberos or something else as a transport protocol make sense for you.
While the Kerberos protocol can be used to provide encryption services on most platforms, microsoft provides no mechanism to do this directory. Instead GSSAPI may be used to call these services.
For example, Active Directory uses Kerberos for message integrity.
Similarly, you could use e.g. TLS or IPsec to encrypt your data on the wire and combine it with Kerberos for authentication. But again, this is another protocol performing the actual transport encryption and just using Kerberos as an authentication component.
Related
I am reading the OPC UA specification and there is one thing I am confused about:
When using HTTPS as a transport protocol, the secure channel is already established by the TLS.
In this case, does it make sense to use any other security mode than None?
What would be the benefit to encrypt or sign the messages over an already secured channel?
The SecurityPolicy becomes mostly irrelevant when using HTTPS transport.
From Part 6 when discussing HTTPS:
The SecurityPolicy shall be specified, however, it only affects the algorithms used for signing
the Nonces during the CreateSession/ActivateSession handshake. A SecurityPolicy of None
indicates that the Nonces do not need to be signed.
For what it's worth... the only transport you'll find widely supported in the real world is the OPC UA TCP transport with binary encoding. This is the only combination that is mandatory for implementations.
If you use HTTPS for transport, TLS will define encryption, as you have understood.
But, OPC UA is also enabling Application Authentication using Application Instance Certificates. If you use OPC UA SecurityMode=None, the Application Authentication is ignored. In order to enable Application Authentication with HTTPS, you will need to use at least SecurityMode=Sign, although the message signing or security is not really necessary on top of TLS.
Is it possible in SSL/TLS handshake where client only send its certificate. Server need not to send any certificate ?As of now in one way handshake only server send its certificate to client.
As i am aware of that in this scenario server needs to maintain all clients root certificate(if diffrent).This is not practical.If possible what are the security concerns.
Here is context under Use of SSL with socket programming in C# or C++
Thanks for help!
Yes, it is possible to use SSL/TLS without a server certificate. See https://security.stackexchange.com/questions/38589/can-https-server-configured-without-a-server-certificate
You need software that supports at least one of the anonymous cipher suites SSL/TLS supports, such as TLS_DH_anon_WITH_AES_128_CBC_SHA256. Per the OpenSSL Diffie Hellman wiki entry:
Anonymous Diffie-Hellman uses Diffie-Hellman, but without authentication. Because the keys used in the exchange are not
authenticated, the protocol is susceptible to Man-in-the-Middle
attacks. Note: if you use this scheme, a call to
SSL_get_peer_certificate will return NULL because you have selected an
anonymous protocol. This is the only time SSL_get_peer_certificate
is allowed to return NULL under normal circumstances.
You should not use Anonymous Diffie-Hellman. You can prohibit its use
in your code by using "!ADH" in your call to SSL_set_cipher_list.
Note that support for such cipher suites and configurations in most available SSL/TLS software is either non-existent or very limited, as such configurations are vulnerable to man-in-the-middle attacks - one of the very things SSL/TLS is used to prevent. You'd have to compile your own OpenSSL code, for example.
Unless you control the software at both ends of your communication channel(s), effectively there's no way to implement such a system.
And there's no real reason to implement such a system as it's not secure at all.
But you can do it with a lot of effort.
Server Certificate which contains the public key part of its key pair is must. The client may decide to overlook the authenticity of the certificate( Its bad!) but the TLS handshake requires the public key for the generation of pre-master-secret. So no way you can prevent server from sending the certificate.
Server if it wishes can request client for its certificate. This is for authenticating the client.
As I understand it,
SPN is an authenticating tool for windows services.
Kerberos is a
user authentication service
SPNEGO-GSSAPI is the third party API to
be able to use those services.
SSPI : is the Neutral layer to send
request from SPNEGO to SPN service.
Am I completely lost?
Trying to figure out how it works but information, is either too precise or not enough.
Ok a more verbose answer:-
SPN - Service Principal Name. It is an identifier associated with each account in a KDC implementation(AD, OpenLDAP etc). Basically if your account acts as a service to which a client authenticates, the client has to specify "who" it wants to communicate to. This "who" identifier is the SPN. This is the strict definition. Many people often call the client name (UPN - User Principal Name) of a service as SPN. This happens when the service itself may act as a client( google the delegation scenario ). This is not strictly correct but widely assumed true.
Kerberos is a protocol for authentication. It is a name for a framework. It involves a third party server(called KDC or Key Distribution Centre) and involves a series of steps of acquiring tickets(tokens of authentication). It is really complicated so http://en.wikipedia.org/wiki/Kerberos_(protocol)
To some extent you got this right. GSSAPI is an API but SPNEGO is not. GSSAPI is technically agnostic to the auth mechanism you use, but most folks use it for kerberos authentication. SPNEGO is a pseudo mechanism, in the sense it declares an RFC for authentication based communication in HTTP domain. Strictly speaking SPNEGO is a specification but most folks also consider it as an implementation. For instance, Sun and IBM JDK provides "mechanism providers" for SPNEGO token generation but GSSAPI is used to actually call it. This is done in many projects(Tomcat as a Server is and example that come to the top of my head and one of the folks who answered this question developed it).
SSPI is an analogue to GSSAPI in windows. Its a different API which ends up doing something very similar to GSSAPI.
Not quite.
SPN simply means 'Server Principal Name' and is the AD or Kerberos slang for the service you try to authenticate against.
Kerberos is a user authentication service, more or less yes. It also provides security for network messages and calls between services.
SPNEGO-GSSAPI* is a kind of strange beast. GSSAPI (Generic Security Service Application Program Interface) is an API to (in principle) different authentication services, it provides negotiation of the mechanisms used. Often the only mechanism available will be Kerberos though. It is the usual API to attach 3rd party programs to Kerberos when you are on Unix (defined in various RFCs, for example RFC 2743 )
On the windows platform SSPI is the generic layer, so it compares to GSSAPI.
SPNEGO is kind of a strange hybrid. It is a mechanism to be used in SSPI, HTTP Auth or GSSAPI which negotiates another auth protocol (for example Kerberos or NTLM if you are on Windows), so it basically does the same thing GSSAPI does again in a different way.
Typical uses of SPNEGO are HTTP authentication to a windows domain, for example IIS uses it if you use 'Integrated windows authentication'. It is also used when you select the 'Negotiate' options for SSPI. See for example RFC 4559
Almost all of your understandings are wrong.
Here it goes:
SPN: A specific service-class is bound to a specific account, e.g. HTTP to www.stackoverflow.com => HTTP/www.stackoverflow.com#STACKOVERFLOW.COM
Yes
3./4. GSS-API (Unix)/SSPI (Windows): Mechanism neutral API to interact with. E.g, Kerberos 5, NTLM, SPNEGO, etc.
SPNEGO: It is one of many mechnisms supported by GSS-API/SSPI. It is actually a pseudo-mech.
Currently I am using Net::LDAP::Server to setup my server but it is not secure enough.
Is there any module or method so that I can setup a LDAP server over TLS or other secure connection?
I just found many information about how to connect to a secure ldap server, but cant found how to setup a secure ldap server.
Can anyone give some advices?
How does an LDAPS connection work
LDAPS is an unofficial protocol. It is to LDAP what HTTPS is to HTTP, namely the exact same protocol (but in this case LDAPv2 or LDAPv3) running over a secured SSL ("Secure Socket Layer") connection to port 636 (by default).
Not all servers will be configured to listen for LDAPS connections, but if they do, it will commonly be on a different port from the normal plain text LDAP port.
Using LDAPS can potentially solve the vulnerabilities described above, but you should be aware that simply "using" SSL is not a magic bullet that automatically makes your system "secure".
First of all, LDAPS can solve the problem of verifying that you are connected to the correct server. When the client and server connect, they perform a special SSL 'handshake', part of which involves the server and client exchanging cryptographic keys, which are described using X.509 certificates. If the client wishes to confirm that it is connected to the correct server, all it needs to do is verify the server's certificate which is sent in the handshake. This is done in two ways:
check that the certificate is signed (trusted) by someone that you trust, and that the certificate hasn't been revoked. For instance, the server's certificate may have been signed by Verisign (www.verisign.com), and you decide that you want to trust Verisign to sign legitimate certificates.
check that the least-significant cn RDN in the server's certificate's DN is the fully-qualified hostname of the hostname that you connected to when creating the LDAPS object. For example if the server is , then the RDN to check is cn=ldap.example.com.
You can do this by using the cafile and capath options when creating a Net::LDAPS object, and by setting the verify option to 'require'.
To prevent hackers 'sniffing' passwords and other information on your connection, you also have to make sure the encryption algorithm used by the SSL connection is good enough. This is also something that gets decided by the SSL handshake - if the client and server cannot agree on an acceptable algorithm the connection is not made.
Net::LDAPS will by default use all the algorithms built into your copy of OpenSSL, except for ones considered to use "low" strength encryption, and those using export strength encryption. You can override this when you create the Net::LDAPS object using the 'ciphers' option.
Once you've made the secure connection, you should also check that the encryption algorithm that is actually being used is one that you find acceptable. Broken servers have been observed in the field which 'fail over' and give you an unencrypted connection, so you ought to check for that.
How does LDAP and TLS work
SSL is a good solution to many network security problems, but it is not a standard. The IETF corrected some defects in the SSL mechanism and published a standard called RFC 2246 which describes TLS ("Transport Layer Security"), which is simply a cleaned up and standardized version of SSL.
You can only use TLS with an LDAPv3 server. That is because the standard (RFC 2830) for LDAP and TLS requires that the normal LDAP connection (ie., on port 389) can be switched on demand from plain text into a TLS connection. The switching mechanism uses a special extended LDAP operation, and since these are not legal in LDAPv2, you can only switch to TLS on an LDAPv3 connection.
So the way you use TLS with LDAPv3 is that you create your normal LDAPv3 connection using Net::LDAP::new(), and then you perform the switch using Net::LDAP::start_tls(). The start_tls() method takes pretty much the same arguments as Net::LDAPS::new(), so check above for details.
Well, perhaps LDAPS is not an RFC but to say it is not a standard or secure is certainly a stretch.
LDAPS is supported by ALL LDAP Server Vendors.
LDAPS is at least as secure as HTTPS.
As with ALL SSL (or TLS) the security weak points are how the certificates are handled.
Certainly LDAPS is more supported by LDAP server vendors and clients than is TLS. Active Directory as one example, does not support TLS. Querying the rootDSE for the supportedExtention 1.3.6.1.4.1.1466.20037 will (should) show if TLS is supported on any particular LDAP server.
We have some examples at:
http://ldapwiki.willeke.com/wiki/Perl%20LDAP%20Samples.
single sign-on (SSO) for web applications (used through a browser) is well-documented and established. Establishing SSO for Rich Clients is harder, and is usually suggested on the basis of Kerberos tickets, in particular using a Windows login towards an ActiveDirectory in a domain.
However, I'm looking for a more generic solution for the following: I need to establish "real" SSO (one identity for all applications, i.e. not just a password synchronization across applications), where on client's side (unmanaged computers, incl. non-Windows), the "end clients" are a Java application and a GTK+ application. Both communicate with their server counterparts using a HTTP-based protocol (say, WebServices over HTTPS). The clients and the server do not necessarily sit in the same LAN/Intranet, but the client can access the servers from the extranet. The server-side of all the applications sit in the same network area, and the SSO component can access the identity provider via LDAP.
My question is basically "how can I do that"? More specifically,
a) is there an agreed-upon mechanism for secure, protected client-side "sso session storage", as it is the case with SSO cookies for browser-accessed applications? Possibly something like emulating Kerberos (TGT?) or even directly re-using it even where no ActiveDirectory authentication has been performed on the client side?
b) are there any protocols/APIs/frameworks for the communication between rich clients and the other participants of SSO (as it is the case for cookies)?
c) are there any APIs/frameworks for pushing kerberos-like TGTs and session tickets over the network?
d) are there any example implementations / tutorials available which demonstrate how to perform rich-client SSO?
I understand that there are "fill-out" agents which learn to enter the credentials into the application dialogues on the client side. I'd rather not use such a "helper" if possible.
Also, if possible, I would like to use CAS, Shibboleth and other open-source components where possible.
Thanks for comments, suggestions and answers!
MiKu
Going with AD account IS the generic solution. Kerberos is ubiquitous. This is the only mechanism which will ask you for your credentials once and just once at logon time.
This is all feasable, you need:
A KDC
Correct DNS entries
KDC accounts
Correct SPN entries
Client computers configured to talk to the KDC
Java app using JAAS with JGSS to obtain service tickets
GSS-API with your GTK+ app to obtain service tickets
What did you figure out yourself yet?
Agreed with Michael that GSSAPI/Kerberos is what you want to use. I'll add that there’s a snag with Java, however: by default, JGSS uses its own GSSAPI and Kerberos implementations, written in Java in the JDK, and not the platform’s libraries. Thus, it doesn’t obey your existing configuration and doesn’t work like anything else (e.g. on Unix it doesn’t respect KRB5CCNAME or other environment variables you’re used to, can’t use the DNS to locate KDCs, has a different set of supported ciphers, etc.). It is also buggy and limited; it can’t follow referrals, for example.
On Unix platforms, you can tell JGSS to bypass the JDK code and use an external GSSAPI library by starting the JVM with:
-Dsun.security.jgss.native=true -Dsun.security.jgss.lib=/path/to/libgssapi_krb5.so
There is no analogous option on Windows to use SSPI, however. This looks promising:
http://dblock.github.com/waffle/
... but I haven’t gotten to addressing this issue yet.