I'm trying to optimize an image reconstruction algorithm using genetic algorithm.I took initial population size as 10.I have an input image an 10 reconstructed image.fitness function is the difference between these two.That is
fitness_1 = inputimage - reconstructedimage_1;
fitness_2 = inputimage - reconstructedimage_2;
:
:
fitness_10 = inputimage - reconstructedimage_10;
I want to chose the best fitness population among them.But my fitness result is an image(matrix with intensity values).So how can I get a single fitness value for each population for doing crossover in the next stage.
Please help.Thanks in advance
You need to define a function which measures the quality of the match as a single scalar value. Actually you have a choice here - anything which could measure the closeness in a more-or-less-continuous manner would work. However, probably the simplest is mean squared error of each pixel value in the image.
Here's how I might do this for your first reconstruction:
fitness_1 = abs(inputimage - reconstructedimage_1).^2;
fitness_1 = sum( fitness_1(:) ) / numel( fitness_1 );
Related
Background: I am working on a problem similar to the nonlinear logistic regression described in the link [1] (my problem is more complicated, but link [1] is enough for the next sections of this post). Comparing my results with those obtained in parallel with a R package, I got similar results for the coefficients, but (very approximately) an opposite logLikelihood.
Hypothesis: The logLikelihood given by fitnlm in Matlab is in fact the negative LogLikelihood. (Note that this impairs consequently the BIC and AIC computation by Matlab)
Reasonning: in [1], the same problem is solved through two different approaches. ML-approach/ By defining the negative LogLikelihood and making an optimization with fminsearch. GLS-approach/ By using fitnlm.
The negative LogLikelihood after the ML-approach is:380
The negative LogLikelihood after the GLS-approach is:-406
I imagine the second one should be at least multiplied by (-1)?
Questions: Did I miss something? Is the (-1) coefficient enough, or would this simple correction not be enough?
Self-contained code:
%copy-pasting code from [1]
myf = #(beta,x) beta(1)*x./(beta(2) + x);
mymodelfun = #(beta,x) 1./(1 + exp(-myf(beta,x)));
rng(300,'twister');
x = linspace(-1,1,200)';
beta = [10;2];
beta0=[3;3];
mu = mymodelfun(beta,x);
n = 50;
z = binornd(n,mu);
y = z./n;
%ML Approach
mynegloglik = #(beta) -sum(log(binopdf(z,n,mymodelfun(beta,x))));
opts = optimset('fminsearch');
opts.MaxFunEvals = Inf;
opts.MaxIter = 10000;
betaHatML = fminsearch(mynegloglik,beta0,opts)
neglogLH_MLApproach = mynegloglik(betaHatML);
%GLS Approach
wfun = #(xx) n./(xx.*(1-xx));
nlm = fitnlm(x,y,mymodelfun,beta0,'Weights',wfun)
neglogLH_GLSApproach = - nlm.LogLikelihood;
Source:
[1] https://uk.mathworks.com/help/stats/examples/nonlinear-logistic-regression.html
This answer (now) only details which code is used. Please see Tom Lane's answer below for a substantive answer.
Basically, fitnlm.m is a call to NonLinearModel.fit.
When opening NonLinearModel.m, one gets in line 1209:
model.LogLikelihood = getlogLikelihood(model);
getlogLikelihood is itself described between lines 1234-1251.
For instance:
function L = getlogLikelihood(model)
(...)
L = -(model.DFE + model.NumObservations*log(2*pi) + (...) )/2;
(...)
Please also not that this notably impacts ModelCriterion.AIC and ModelCriterion.BIC, as they are computed using model.LogLikelihood ("thinking" it is the logLikelihood).
To get the corresponding formula for BIC/AIC/..., type:
edit classreg.regr.modelutils.modelcriterion
this is Tom from MathWorks. Take another look at the formula quoted:
L = -(model.DFE + model.NumObservations*log(2*pi) + (...) )/2;
Remember the normal distribution has a factor (1/sqrt(2*pi)), so taking logs of that gives us -log(2*pi)/2. So the minus sign comes from that and it is part of the log likelihood. The property value is not the negative log likelihood.
One reason for the difference in the two log likelihood values is that the "ML approach" value is computing something based on the discrete probabilities from the binomial distribution. Those are all between 0 and 1, and they add up to 1. The "GLS approach" is computing something based on the probability density of the continuous normal distribution. In this example, the standard deviation of the residuals is about 0.0462. That leads to density values that are much higher than 1 at the peak. So the two things are not really comparable. You would need to convert the normal values to probabilities on the same discrete intervals that correspond to individual outcomes from the binomial distribution.
I am new to Apache Spark and trying to use the machine learning library to predict some data. My dataset right now is only about 350 points. Here are 7 of those points:
"365","4",41401.387,5330569
"364","3",51517.886,5946290
"363","2",55059.838,6097388
"362","1",43780.977,5304694
"361","7",46447.196,5471836
"360","6",50656.121,5849862
"359","5",44494.476,5460289
Here's my code:
def parsePoint(line):
split = map(sanitize, line.split(','))
rev = split.pop(-2)
return LabeledPoint(rev, split)
def sanitize(value):
return float(value.strip('"'))
parsedData = textFile.map(parsePoint)
model = LinearRegressionWithSGD.train(parsedData, iterations=10)
print model.predict(parsedData.first().features)
The prediction is something totally crazy, like -6.92840330273e+136. If I don't set iterations in train(), then I get nan as a result. What am I doing wrong? Is it my data set (the size of it, maybe?) or my configuration?
The problem is that LinearRegressionWithSGD uses stochastic gradient descent (SGD) to optimize the weight vector of your linear model. SGD is really sensitive to the provided stepSize which is used to update the intermediate solution.
What SGD does is to calculate the gradient g of the cost function given a sample of the input points and the current weights w. In order to update the weights w you go for a certain distance in the opposite direction of g. The distance is your step size s.
w(i+1) = w(i) - s * g
Since you're not providing an explicit step size value, MLlib assumes stepSize = 1. This seems to not work for your use case. I'd recommend you to try different step sizes, usually lower values, to see how LinearRegressionWithSGD behaves:
LinearRegressionWithSGD.train(parsedData, numIterartions = 10, stepSize = 0.001)
I hava a function for quantization and decrease the bit depth of images and then increase it and compare with original image.As result I need a table like this:(MSE:mean square error)
but I don't know a much about companding and uniform qauntizations.
this is my function.
function [Q,Q2,Err] = quantization (I,b);
img=imread(I);
Q=uint8(img/2^(8-b));
Q2=uint8(Q*2^(8-b));
Err=mean(mean((double(img) - double(Q2)).^2,2),1);
subplot(1,4,1), imshow(img)
subplot(1,4,2), imshow(Q)
subplot(1,4,3), imshow(Q2)
display(Err)
end
help me please...
I would like to calibrate a interest rate tree using the optimization tool in matlab. Need some guidance on doing it.
The interest rate tree looks like this:
How it works:
3.73% = 2.5%*exp(2*0.2)
96.40453 = (0.5*100 + 0.5*100)/(1+3.73%)
94.15801 = (0.5*96.40453+ 0.5*97.56098)/(1+2.50%)
The value of 2.5% is arbitrary and the upper node is obtained by multiplying with an exponential of 2*volatility(here it is 20%).
I need to optimize the problem by varying different values for the lower node.
How do I do this optimization in Matlab?
What I have tried so far?
InterestTree{1}(1,1) = 0.03;
InterestTree{3-1}(1,3-1)= 2.5/100;
InterestTree{3}(2,:) = 100;
InterestTree{3-1}(1,3-2)= (2.5*exp(2*0.2))/100;
InterestTree{3-1}(2,3-1)=(0.5*InterestTree{3}(2,3)+0.5*InterestTree{3}(2,3-1))/(1+InterestTree{3-1}(1,3-1));
j = 3-2;
InterestTree{3-1}(2,3-2)=(0.5*InterestTree{3}(2,j+1)+0.5*InterestTree{3}(2,j))/(1+InterestTree{3-1}(1,j));
InterestTree{3-2}(2,3-2)=(0.5*InterestTree{3-1}(2,j+1)+0.5*InterestTree{3-1}(2,j))/(1+InterestTree{3-2}(1,j));
But I am not sure how to go about the optimization. Any suggestions to improve the code, do tell me..Need some guidance on this..
Are you expecting the tree to increase in size? Or are you just optimizing over the value of the "2.5%" parameter?
If it's the latter, there are two ways. The first is to model the tree using a closed form expression by replacing 2.5% with x, which is possible with the tree. There are nonlinear optimization toolboxes available in Matlab (e.g. more here), but it's been too long since I've done this to give you a more detailed answer.
The seconds is the approach I would immediately do. I'm interpreting the example you gave, so the equations I'm using may be incorrect - however, the principle of using the for loop is the same.
vol = 0.2;
maxival = 100;
val1 = zeros(1,maxival); %Preallocate
finalval = zeros(1,maxival);
for ival=1:maxival
val1(ival) = i/1000; %Use any scaling you want. This will go from 0.1% to 10%
val2=val1(ival)*exp(2*vol);
x1 = (0.5*100+0.5*100)/(1+val2); %Based on the equation you gave
x2 = (0.5*100+0.5*100)/(1+val1(ival)); %I'm assuming this is how you calculate the bottom node
finalval(ival) = x1*0.5+x2*0.5/(1+...); %The example you gave isn't clear, so replace this with whatever it should be
end
[maxval, indmaxval] = max(finalval);
The maximum value is in maxval, and the interest that maximized this is in val1(indmaxval).
I am trying to implement Naive Bayes Classifier using a dataset published by UCI machine learning team. I am new to machine learning and trying to understand techniques to use for my work related problems, so I thought it's better to get the theory understood first.
I am using pima dataset (Link to Data - UCI-ML), and my goal is to build Naive Bayes Univariate Gaussian Classifier for K class problem (Data is only there for K=2). I have done splitting data, and calculate the mean for each class, standard deviation, priors for each class, but after this I am kind of stuck because I am not sure what and how I should be doing after this. I have a feeling that I should be calculating posterior probability,
Here is my code, I am using percent as a vector, because I want to see the behavior as I increase the training data size from 80:20 split. Basically if you pass [10 20 30 40] it will take that percentage from 80:20 split, and use 10% of 80% as training.
function[classMean] = naivebayes(file, iter, percent)
dm = load(file);
for i=1:iter
idx = randperm(size(dm.data,1))
%Using same idx for data and labels
shuffledMatrix_data = dm.data(idx,:);
shuffledMatrix_label = dm.labels(idx,:);
percent_data_80 = round((0.8) * length(shuffledMatrix_data));
%Doing 80-20 split
train = shuffledMatrix_data(1:percent_data_80,:);
test = shuffledMatrix_data(percent_data_80+1:length(shuffledMatrix_data),:);
train_labels = shuffledMatrix_label(1:percent_data_80,:)
test_labels = shuffledMatrix_data(percent_data_80+1:length(shuffledMatrix_data),:);
%Getting the array of percents
for pRows = 1:length(percent)
percentOfRows = round((percent(pRows)/100) * length(train));
new_train = train(1:percentOfRows,:)
new_trin_label = shuffledMatrix_label(1:percentOfRows)
%get unique labels in training
numClasses = size(unique(new_trin_label),1)
classMean = zeros(numClasses,size(new_train,2));
for kclass=1:numClasses
classMean(kclass,:) = mean(new_train(new_trin_label == kclass,:))
std(new_train(new_trin_label == kclass,:))
priorClassforK = length(new_train(new_trin_label == kclass))/length(new_train)
priorClassforK_1 = 1 - priorClassforK
end
end
end
end
First, compute the probability of evey class label based on frequency counts. For a given sample of data and a given class in your data set, you compute the probability of evey feature. After that, multiply the conditional probability for all features in the sample by each other and by the probability of the considered class label. Finally, compare values of all class labels and you choose the label of the class with the maximum probability (Bayes classification rule).
For computing conditonal probability, you can simply use the Normal distribution function.