I have a vector A = [ 1 1 1 2 3 3 3 2 2 1 1 1 1 3 3 3 ].
I want to find the positions of every element and store this in its own matrix.
To be more specific, I want to find the position of every elements for each set of elements, in a n by m matrix (where m would be the type of element, and n would be the number of elements found in vector A).
So, for example, assuming there are only values 1, 2, and 3 in vector A, the first column of my matrix would be for values that are 1, and would read off (1, 2, 3, 10, 11, 12, 13) and the second column, for values of 2, would read off (4, 8, 9) and the third column, for values of 3, would read off (5, 6, 7, 14, 15, 16).
This one liner works as expected:
B = accumarray(A', 1:length(A), [], #(x) {sort(x)})
B is a cell array where B{i} contains the sorted list of indices where i is located.
This could be one approach -
%// For each element create a pair: [R,C], where the first element R would
%// represent its index position in input array and C would be their uniqueness
[R,C] = find(bsxfun(#eq,A(:),unique(A(:).'))) %//'
%// Find lengths of each unique group
lens = diff([0 ; find(diff(C)) ; numel(C)])
%// Store each element into groups based on the uniqueness and whose
%// values would be the index positions i.e. taken from R
out = mat2cell(R(:).',1,lens)
Sample run for given input -
>> A
A =
1 1 1 2 3 3 3 2 2 ...
1 1 1 1 3 3 3
>> celldisp(out)
out{1} =
1 2 3 10 11 12 13
out{2} =
4 8 9
out{3} =
5 6 7 14 15 16
Similar to Divakar's answer but with sort
[out,i] = sort(A);
out1 = diff(find([1,diff(out)]));
out2 = [out1,numel(A)-sum(out1(:))];
out3 = mat2cell(i,1,out2);
Results:
A = [ 1 1 1 2 3 3 3 2 2 1 1 1 1 3 3 3 ]; %// input
>> celldisp(out3)
out3{1} =
1 2 3 10 11 12 13
out3{2} =
4 8 9
out3{3} =
5 6 7 14 15 16
Related
a = [1 1 1 1 2 2 2 2 3 3 3 3; 1 2 3 4 5 6 7 8 9 10 11 12]';
What is the quickest way to sum the values in column 2 that correspond to the first and last occurrence of each number in column 1?
The desired output:
1 5
2 13
3 21
EDIT: The result should be the same if the numbers in column 1 are ordered differently.
a = [2 2 2 2 1 1 1 1 3 3 3 3; 1 2 3 4 5 6 7 8 9 10 11 12]';
2 5
1 13
3 21
You can use accumarray as follows. Not sure how fast it is, especially because it uses a custom anonymous function:
[u, ~, v] = unique(a(:,1), 'stable');
s = accumarray(v, a(:,2), [], #(x) x(1)+x(end));
result = [u s];
If the values in the first column of a are always in contiguous groups, the following approach can be used as well:
ind_diff = find(diff(a(:,1))~=0);
ind_first = [1; ind_diff+1];
ind_last = [ind_diff; size(a,1)];
s = a(ind_first,2) + a(ind_last,2);
result = [unique(a(:,1), 'stable') s];
just lets make it simple, assume that I have a 10x3 matrix in matlab. The numbers in the first two columns in each row represent the x and y (position) and the number in 3rd columns show the corresponding value. For instance, [1 4 12] shows that the value of function in x=1 and y=4 is equal to 12. I also have same x, and y in different rows, and I want to average the values with same x,y. and replace all of them with averaged one.
For example :
A = [1 4 12
1 4 14
1 4 10
1 5 5
1 5 7];
I want to have
B = [1 4 12
1 5 6]
I really appreciate your help
Thanks
Ali
Like this?
A = [1 4 12;1 4 14;1 4 10; 1 5 5;1 5 7];
[x,y] = consolidator(A(:,1:2),A(:,3),#mean);
B = [x,y]
B =
1 4 12
1 5 6
Consolidator is on the File Exchange.
Using built-in functions:
sparsemean = accumarray(A(:,1:2), A(:,3).', [], #mean, 0, true);
[i,j,v] = find(sparsemean);
B = [i.' j.' v.'];
A = [1 4 12;1 4 14;1 4 10; 1 5 5;1 5 7]; %your example data
B = unique(A(:, 1:2), 'rows'); %find the unique xy pairs
C = nan(length(B), 1);
% calculate means
for ii = 1:length(B)
C(ii) = mean(A(A(:, 1) == B(ii, 1) & A(:, 2) == B(ii, 2), 3));
end
C =
12
6
The step inside the for loop uses logical indexing to find the mean of rows that match the current xy pair in the loop.
Use unique to get the unique rows and use the returned indexing array to find the ones that should be averaged and ask accumarray to do the averaging part:
[C,~,J]=unique(A(:,1:2), 'rows');
B=[C, accumarray(J,A(:,3),[],#mean)];
For your example
>> [C,~,J]=unique(A(:,1:2), 'rows')
C =
1 4
1 5
J =
1
1
1
2
2
C contains the unique rows and J shows which rows in the original matrix correspond to the rows in C then
>> accumarray(J,A(:,3),[],#mean)
ans =
12
6
returns the desired averages and
>> B=[C, accumarray(J,A(:,3),[],#mean)]
B =
1 4 12
1 5 6
is the answer.
What is the fastest and the simplest way to generate an array like
[0, 1, 3, 4, 6, 7, 9, 10, ...]
in MATLAB?
You can obtain the cumulative sum of the vector of steps (in your case it is [1 2 1 2 1 2 1 2 ...]). For example:
x = cumsum([0, repmat([1 2], 1, 4)])
x =
0 1 3 4 6 7 9 10 12
You can generate matrix with two rows: top row for odd array elements, bottom row for even elements. Than transform matrix into array with reshape.
>> a=[0:3:15; 1:3:16]
a =
0 3 6 9 12 15
1 4 7 10 13 16
>> a=reshape(a,1,12)
a =
0 1 3 4 6 7 9 10 12 13 15 16
Not one line but will work for either an odd or even number of total elements, and could be expanded if you wanted more than two different steps:
a = zeros(1,8);
a(1:2:end) = 0:3:10;
a(2:2:end) = 1:3:10;
Here is a simple and compact way:
A = 0:20;
A(3:3:end) = []
I have a 22007x3 matrix with data in column 3 and two separate indices in columns 1 and 2.
eg.
x =
1 3 4
1 3 5
1 3 5
1 16 4
1 16 3
1 16 4
2 4 1
2 4 3
2 11 2
2 11 3
2 11 2
I need to find the mean of the values in column 3 when the values in column 1 are the same AND the values in column 2 are the same, to end up with something like:
ans =
1 3 4.6667
1 16 3.6667
2 4 2
2 11 2.3333
Please bear in mind that in my data, the number of times the values in column 1 and 2 occur can be different.
Two options I've tried already are the meshgrid/accumarray option, using two distinct unique functions and a 3D array:
[U, ix, iu] = unique(x(:, 1));
[U2,ix2,iu2] = unique(x(:,2));
[c, r, j] = meshgrid((1:size(x(:, 1), 2)), iu, iu2);
totals = accumarray([r(:), c(:), j(:)], x(:), [], #nanmean);
which gives me this:
??? Maximum variable size allowed by the program is exceeded.
Error in ==> meshgrid at 60
xx = xx(ones(ny,1),:,ones(nz,1));
and the loop option,
for i=1:size(x,1)
if x(i,2)== x(i+1,2);
totals(i,:)=accumarray(x(:,1),x(:,3),[],#nanmean);
end
end
which is obviously so very, very wrong, not least because of the x(i+1,2) bit.
I'm also considering creating separate matrices depending on how many times a value in column 1 occurs, but that would be long and inefficient, so I'm loathe to go down that road.
Group on the first two columns with a unique(...,'rows'), then accumulate only the third column (always the best approach to accumulate only where accumulation really happens, thus avoiding indices, i.e. the first two columns, which you can reattach with unX):
[unX,~,subs] = unique(x(:,1:2),'rows');
out = [unX accumarray(subs,x(:,3),[],#nanmean)];
out =
1 3 4.6667
1 16 3.6667
2 4 2
2 11 2.33
This is an ideal opportunity to use sparse matrix math.
x = [ 1 2 5;
1 2 7;
2 4 6;
3 4 6;
1 4 8;
2 4 8;
1 1 10]; % for example
SM = sparse(x(:,1),x(:,2), x(:,3);
disp(SM)
Result:
(1,1) 10
(1,2) 12
(1,4) 8
(2,4) 14
(3,6) 7
As you can see, we did the "accumulate same indices into same container" in one fell swoop. Now you need to know how many elements you have:
NE = sparse(x(:,1), x(:,2), ones(size(x(:,1))));
disp(NE);
Result:
(1,1) 1
(1,2) 2
(1,4) 1
(2,4) 2
(3,6) 1
Finally, you divide one by the other to get the mean (only use elements that have a value):
matrixMean = SM;
nz = find(NE>0);
matrixMean(nz) = SM(nz) ./ NE(nz);
If you then disp(matrixMean), you get
(1,1) 10
(1,2) 6
(1,4) 8
(2,4) 7
(3,6) 7
If you want to access the individual elements differently, then after you have computed SM and NE you can do
[i j n] = find(NE);
matrixMean = SM(i,j)./NE(i,j);
disp([i(:) j(:) nonzeros(matrixMean)]);
We have p.e. i = 1:25 iterations.
Each iteration result is a 1xlength(N) cell array, where 0<=N<=25.
iteration 1: 4 5 9 10 20
iteration 2: 3 8 9 13 14 6
...
iteration 25: 1 2 3
We evaluate the results of all iterations to one matrix sorted according to frequency each value is repeated in descending order like this example:
Matrix=
Columns 1 through 13
16 22 19 25 2 5 8 14 17 21 3 12 13
6 5 4 4 3 3 3 3 3 3 2 2 2
Columns 14 through 23
18 20 1 6 7 9 10 11 15 23
2 2 1 1 1 1 1 1 1 1
Result explanation: Column 1: N == 16 is present in 6 iterations, column 2: N == 22 is present in 5 iterations etc.
If a number N isn't displayed (in that paradigm N == 4, N == 24) in any iteration, is not listed with frequency index of zero either.
I want to associate each iteration (i) to the first N it is displayed p.e. N == 9 to be present only in first iteration i = 1 and not in i = 2 too, N == 3 only to i = 2 and not in i = 25 too etc until all i's to be unique associated to N's.
Thank you in advance.
Here's a way that uses a feature of unique (i.e. that it returns the index to the first value) that was introduced in R2012a
%# make some sample data
iteration{1} = [1 2 4 6];
iteration{2} = [1 3 6];
iteration{3} = [1 2 3 4 5 6];
nIter= length(iteration);
%# create an index vector so we can associate N's with iterations
nn = cellfun(#numel,iteration);
idx = zeros(1,sum(nn));
idx([1,cumsum(nn(1:end-1))+1]) = 1;
idx = cumsum(idx); %# has 4 ones, 3 twos, 6 threes
%# create a vector of the same length as idx with all the N's
nVec = cat(2,iteration{:});
%# run `unique` on the vector to identify the first occurrence of each N
[~,firstIdx] = unique(nVec,'first');
%# create a "cleanIteration" array, where each N only appears once
cleanIter = accumarray(idx(firstIdx)',firstIdx',[nIter,1],#(x){sort(nVec(x))},{});
cleanIter =
[1x4 double]
[ 3]
[ 5]
>> cleanIter{1}
ans =
1 2 4 6
Here is another solution using accumarray. Explanations in the comments
% example data (from your question)
iteration{1} = [4 5 9 10 20 ];
iteration{2} = [3 8 9 13 14 6];
iteration{3} = [1 2 3];
niterations = length(iteration);
% create iteration numbers
% same as Jonas did in the first part of his code, but using a short loop
for i=1:niterations
idx{i} = i*ones(size(iteration{i}));
end
% count occurences of values from all iterations
% sort them in descending order
occurences = accumarray([iteration{:}]', 1);
[occ val] = sort(occurences, 1, 'descend');
% remove zero occurences and create the Matrix
nonzero = find(occ);
Matrix = [val(nonzero) occ(nonzero)]'
Matrix =
3 9 1 2 4 5 6 8 10 13 14 20
2 2 1 1 1 1 1 1 1 1 1 1
% find minimum iteration number for all occurences
% again, using accumarray with #min function
assoc = accumarray([iteration{:}]', [idx{:}]', [], #min);
nonzero = find(assoc);
result = [nonzero assoc(nonzero)]'
result =
1 2 3 4 5 6 8 9 10 13 14 20
3 3 2 1 1 2 2 1 1 2 2 1