I was reading a code sample that calculates the factorial using Lisp as below:
(defun fatorial (n)
(cond
((= n 1) 1)
(t (* n (fatorial (- n 1))))))
So, I was wondering what is t in this code sample? Does it have any special meaning in Lisp? I searched but couldn't find my answer!
That's the symbol LISP uses for True. In a cond in LISPs, the "catch all" at the end uses t to indicate that if none of the preceding conditions evaluate to True, this code will always execute.
Consider it here as the equivalent of an else in an if-else. On the whole, though, it just represents True.
A cond consists of the cond symbol followed by a number of cond clauses, each of which is a list. The first element of a cond clause is the condition; the remaining elements (if any) are the action. The cond form finds the first clause whose condition evaluates to true (ie, doesn't evaluate to nil); it then executes the corresponding action and returns the resulting value.
So, in your code, the firs test checks if n equals 1 and, if so, returns 1. The other clause, starting with "t" (for true in lisp) is the "else" part of the condition.
Related
I have an assignment for class specifically testing our understanding of do, asking to define a function to produce the minimum of a list of numbers. We are asked to also use a secondary function ("smaller") to do so.
I have no previous experience coding, and am forced to stay within the boundaries of do; I've been reading up on the issue as much as I can, but almost everything I find just suggests using other methods (do*, COND, etc.).
I defined a simple "smaller" as:
(defun smaller (x y)
(if (< x y) x y))
I then approached the problem as such:
(defun minimum (lst)
"(lst)
Returns the minimum of a list of numbers."
(do ((numbers lst (cdr numbers))
(min (car numbers) (smaller min (cadr numbers))))
((null numbers) min)))
I feel there's an issue where the "smaller" function can't be applied on the first loop (feedback about this would be great), otherwise my immediate issue is getting an error of: "UNBOUND-VARIABLE" for the variable "NUMBERS". I am not sure which 'area' is causing the confusion: if I have poorly formatted the do loop entirely, or if one of the second/third/etc. "numbers" is causing an issue.
Can someone provide some feedback? -- again keeping in mind that we are limited specifically to simple do loops, and that I definitely don't have a perfect understanding of what I've already got down.
Thanks so much in advance.
Do binds in parallel, so numbers is not bound when min is first bound. You could fix that by using (car lst) instead of (car numbers) there.
You need to fix the end condition then: (cadr numbers) is nil on the last iteration, you need to stop before that.
For better readability, I'd suggest to use first and second instead of car and cadr here.
You could still refer to numbers as long as you used do*, which is a sequentially binding variant of do. Then you'd have to use car instead of cadr - you're now picking the first number from an already reduced list. And you'd need to modify your end condition to avoid calling smaller with a NIL argument - you should be able to figure this out easily.
I am trying to test some of the lambda calculus functions that I wrote using Racket but not having much luck with the testcases. For example given a definition
; successor function
(define my_succ (λ (one)
(λ (two)
(λ (three)
(two ((one two) three))))))
I am trying to apply it to 1 2 3, expecting the successor of 2 to be 3 by doing
(((my_succ 1) 2) 3)
logic being that since my_succ is a function that takes one arg and passes it to another function that takes one arg which passes it to the third function that takes one arg. But I get
application: not a procedure;
expected a procedure that can be applied to arguments
given: 1
arguments.:
I tried Googling and found a lot of code for the rules, but no examples of application of these rules. How should I call the above successor function in order to test it?
You are mixing two completely different things: lambda terms and functions in Racket.
In Racket you can have anonymous functions, that can be written in the λ notation (like (λ(x) (+ x 1)) that returns the successor of an integer, so that ((λ(x) (+ x 1)) 1) returns 2),
in Pure Lambda Calculus you have only lambda terms, that are written with in a similar notation, and that can be interpreted as functions.
In the second domain, you do not have natural numbers like 0, 1, 2, ..., but you have only lambda terms, and represent numbers as such. For instance, if you use the so-called Church numerals, you represent (in technical term encode) the number 0 with the lambda term λf.λx.x, 1 with λf.λx.f x, 2 with λf.λx.f (f x) and so on.
So, the function successor (for numbers represented with this encoding) correspond to a term which, in Racket notation, is the function that you have written, but you cannot apply it to numbers like 0, 1, etc., but only to other lambda expressions, that is you could write something like this:
(define zero (λ(f) (λ (x) x))) ; this correspond to λf.λx.x
(successor zero)
The result in Racket is a procedure (it will be printed as: #<procedure>), but if you try to test that your result is correct, comparing it with the functional encoding of 1, you will find something strange. In fact:
(equal? (successor zero) (λ(f) (λ(x) (f x))))
produces #f, since if you compare two procedures in Racket you obtain always false (e.g. (equal? (λ(x)x) (λ(x)x)) produces #f), unless you compare the “identical” (in the sense of “same memory cell”) value ((equal? zero zero) gives #t). This is due to the fact that, for comparing correctly two functions, you should compare infinite sets of couples (input, output)!
Another possibility would be representing lambda terms as some kind of structure in Racket, so you can represent Church numerals, as well as "normal" lambda terms, and define a function apply (or better reduce) the perform lambda-reduction.
You are trying to apply currying.
(define my_succ
(lambda(x)(
lambda(y)(
lambda(z)(
(f x y z)))))
(define (add x y z)
(+ x y z))
((( (my_succ add)1)2)3)
Implementation in DR Racket:
I am reading a Gentle Introduction to Symbolic Computation and it asks this question. Basically, the previous content deals with making up bigger functions with small ones. (Like 2- will be made of two 1- (decrement operators for lisp))
So one of the questions is what are the two different ways to define a function HALF which returns one half of its input. I have been able to come up with the obvious one (dividing number by 2) but then get stuck. I was thinking of subtracting HALF of the number from itself to get half but then the first half also has to be calculated...(I don't think the author intended to introduce recursion so soon in the book, so I am most probably wrong).
So my question is what is the other way? And are there only two ways?
EDIT : Example HALF(5) gives 2.5
P.S - the book deals with teaching LISP of which I know nothing about but apparently has a specific bent towards using smaller blocks to build bigger ones, so please try to answer using that approach.
P.P.S - I found this so far, but it is on a completely different topic - How to define that float is half of the number?
Pdf of book available here - http://www.cs.cmu.edu/~dst/LispBook/book.pdf (ctrl+f "two different ways")
It's seems to be you are describing peano arithmetic. In practice it works the same way as doing computation with fluids using cups and buckets.
You add by taking cups from the source(s) to a target bucket until the source(s) is empty. Multiplication and division is just advanced adding and substraction. To halve you take from source to two buckets in alterations until the source is empty. Of course this will either do ceil or floor depending on what bucket you choose to use as answer.
(defun halve (x)
;; make an auxillary procedure to do the job
(labels ((loop (x even acc)
(if (zerop x)
(if even (+ acc 0.5) acc)
(loop (- x 1) (not even) (if even (+ acc 1) acc)))))
;; use the auxillary procedure
(loop x nil 0)))
Originally i provided a Scheme version (since you just tagged lisp)
(define (halve x)
(let loop ((x x) (even #f) (acc 0))
(if (zero? x)
(if even (+ acc 0.5) acc)
(loop (- x 1) (not even) (if even (+ acc 1) acc)))))
Edit: Okay, lets see if I can describe this step by step. I'll break the function into multiple lines also.
(defun half (n)
;Takes integer n, returns half of n
(+
(ash n -1) ;Line A
(if (= (mod n 2) 1) .5 0))) ;Line B
So this whole function is an addition problem. It is simply adding two numbers, but to calculate the values of those two numbers requires additional function calls within the "+" function.
Line A: This performs a bit-shift on n. The -1 tells the function to shift n to the right one bit. To explain this we'll have to look at bit strings.
Suppose we have the number 8, represented in binary. Then we shift it one to the right.
1000| --> 100|0
The vertical bar is the end of the number. When we shift one to the right, the rightmost bit pops off and is not part of the number, leaving us with 100. This is the binary for 4.
We get the same value, however if we perform the shift on nine:
1001| --> 100|1
Once, again we get the value 4. We can see from this example that bit-shifting truncates the value and we need some way to account for the lost .5 on odd numbers, which is where Line B comes in.
Line B: First this line tests to see if n is even or odd. It does this by using the modulus operation, which returns the remainder of a division problem. In our case, the function call is (mod n 2), which returns the remainder of n divided by 2. If n is even, this will return 0, if it is odd, it will return 1.
Something that might be tripping you up is the lisp "=" function. It takes a conditional as its first parameter. The next parameter is the value the "=" function returns if the conditional is true, and the final parameter is what to return if the conditional is false.
So, in this case, we test to see if (mod n 2) is equal to one, which means we are testing to see if n is odd. If it is odd, we add .5 to our value from Line A, if it is not odd, we add nothing (0) to our value from Line A.
I'm looking for the standard way to represent negative infinity in Lisp. Is there a symblic value which is recognised by Lisp's arithmetic functions as less than all other numbers?
Specifically, I'm looking for an elegant way to write the following:
(defun largest (lst)
"Evaluates to the largest number in lst"
(if (null lst)
***negative-inifinity***
(max (car lst) (largest (cdr lst)))))
ANSI Common Lisp has bignum, which can used to represent arbitrarily large numbers as long as you have enough space, but it doesn't specify an "infinity" value. Some implementations may, but that's not part of the standard.
In your case, I think you've got to rethink your approach based on the purpose of your function: finding the largest number in a list. Trying to find the largest number in an empty list is invalid/nonsense, though, so you want to provide for that case. So you can define a precondition, and if it's not met, return nil or raise an error. Which in fact is what the built-in function max does.
(apply #'max '(1 2 3 4)) => 4
(apply #'max nil) => error
EDIT: As pointed by Rainer Joswig, Common Lisp doesn't allow arbitrarily long argument lists, thus it is best to use reduce instead of apply.
(reduce #'max '(1 2 3 4))
There is nothing like that in ANSI Common Lisp. Common Lisp implementations (and even math applications) differ in their representation of negative infinity.
For example in LispWorks for double floats:
CL-USER 23 > (* MOST-NEGATIVE-DOUBLE-FLOAT 10)
-1D++0
I have this problem to work on:
The sum higher order procedure can be generalised even further to capture the idea of combining terms with a fixed operator. The mathematical product operator is a specific example of this idea, with multiplication replacing the addition of the summation operator.
The procedure accumulate, started below, is intended to capture this idea. The combiner parameter represents the operator that is used to reduce the terms, and the base parameter represents the value that is returned when there are no terms left to be combined. For example, if we have already implemented the accumulate procedure, then we could define the sum procedure as:
(define sum (accumulate + 0))
Complete the definition of accumulate so that it behaves according to this description.
(define accumulate
(lambda (combiner base)
(lambda (term start next stop)
(if (> start stop)
...
...))))
I inserted as the last two lines:
base
(combiner base (accumulate (combiner start stop) start next stop))
but, I have no idea if this is correct nor how to actually use the sum procedure to call accumulate and hence sum up numbers.
This is a great way to learn how to fish. Much better
than being given a fish.
Until then, here's how to approach the problem. Write a
function which would do what (accumulate + 0) would do. Don't use the accumulate function; just write a defun which which does what your homework asks. Next, write a function which would do what (accumulate * 1) would do. What are the similarities, what are the differences between the two functions. For the most part, they should be identical except for the occurrence of the + and * operators.
Next, note that the accumulate function is to return a function which will look a lot like the two functions you wrote earlier. Now, using the insight that two functions you wrote are very similar, think how to apply that to the function which (defun accumulate ...) is to return.