I am trying to plot Phase Transition Diagram similar to the one shown below:
Right now, I am able to determine what the phase is for a given point (T,P) (whether it's water or ice or vapor). However, I am having trouble figuring out how to plot the boundary lines (such as the liquidus and solidus lines) like the ones in the figure.
I am not sure whether this is a proper question to ask here, but any input would be much appreciated! Thanks.
Related
I would like to follow a curve (with matlab or opencv) and to find the other end of it when it is cut by an empty space like this example, which is simplified to illustrate the problem:
Link to image of cut curve
Real images are more like this one: Link to real image to analyse
To follow the curve, I can use a skeleton and look at the neighbourhood. The problem is that I don't know how to find the other end efficiently.
I don't think that closing or opening operations could help because as shown on the previous image, there are other curves and the two parts of the curve are quite far from each other so it could lead to boundaries between the different curves instead of the two parts.
I was thinking about polynomial evaluation which could be a solution for simple curves but I am not sure about the precision I could get. If I use a skeleton, I have to find exactly the right pixel or to search in a reasonable neighbourhood which would take some time and once again, as there are other curves in the images, I have to be sure that I will find the good one.
That's why I am searching for an existing function which could estimate precisely the trajectory of the curve and give an usefull output to go further and find the second part of the curve.
If that kind of function doesn't exist, I'm open to any other way of analysing the problem if it can help.
I will start to explain with the first image you provided, you can implement common OpenCV function useful for detecting contour(black region in your case as you have binary image) known as cv2.findContours(), which returns the coordinates of the edges of the surface detected then you can plot each detected contour separately in a blank image to get the edge of your desired line.
Now coming to your 2nd image you have to be slightly careful while performing above analysis as there are many tiny lines. get back to me for further help
I'm trying to generate a 3D structure from a set of 2D cross sections in Matlab- in my case it's a wing that I've optimized the structure for. For the simple example I have two cross sections that are not identical. They can be seen here.
Now I want to do a loft between the surfaces and put caps on the ends, which I do with isosurface and isocaps, respectively. Since I don't want the vague contours, I include a threshold
threshold=0.6;
% loft
fv=isosurface(xq,yq,zq,vq,threshold);
%lids
fvc=isocaps(xq,yq,zq,vq,threshold);
fvc.faces = fvc.faces + size(fv.vertices,1); %re-numbering
%structure with nodes and elements of surface+lids
fall.faces = [fv.faces; fvc.faces];
fall.vertices = [fv.vertices; fvc.vertices];
Now, if I call patch to plot it: pall=patch(fall), it looks like this.
Can anybody tell me why the outer surface is not smooth? And even better, can anyone provide a solution to the issue?
Is it simply that the spacing between the cross sections is too large?
EDIT: Just to clarify. The edge in the middle on the 3d plot is not wanted. I have no idea why it is there. As this is a wing, it's supposed to simply connect the 2d cross sections. There is no data in that region, only at z=2.5m and z=7.5m, as indicated by the cross sections figure.
I'm looking to automate the finding of a location on a plot.
this is the plot
I want my code to automatically find the point where the plot smoothes out. The point that is highlighted in the plot. I did this by hand with the selector tool, but I need to do it for many different plots, so selecting them each by hand would take too long.
Is there anyway to automate this process?
I want to detect the contour of a ring/disc which may be rotated in 3D. I used Detect circles with various radii in grayscale image via Hough Transform by Tao Peng. The results were very close to my requirement. Except for two points:
Using Tao Peng's code I could get a neat blue line indicating the detected contour. I want to access these co-ordinates (sub-pixels) for further processing. I could not figure out where these co-ordinates of detected contour are stored. If you have any idea, please let me know.
Is there any such code to detect ellipse and not only circles? This is because a ring when rotated in 3D wouldn't necessarily be a circle (in which case Tao Peng's code fails. But this is the best I have come across till date. I do not want to binarize my image, as I'll be losing out on a lot of information). Do let me know if there's anything.
Apart from this code, if there's any other one which does a similar job (even if it is like Tao Peng's code, for circles, plus gives me the co-ordinate values), please tell me.
I would prefer MATLAB, but C would also do.
This is an example image who's contour I want to detect, with high accuracy. (The outline of silver disc)
Regards.
Edit:
Here is an example of my output using Tao Peng's code.
So, this is going to be pretty hard for me to explain, or try to detail out since I only think I know what I'm asking, but I could be asking it with bad wording, so please bear with me and ask questions if need-be.
Currently I have a 3D vector field that's being plotted which corresponds to 40 levels of wind vectors in a 3D space (obviously). These are plotted in 3D levels and then stacked on top of each other using a dummy altitude for now (we're debating how to go about pressure altitude conversion most accurately--not to worry here). The goal is to start at a point within the vector space, modeling that point as a particle that can experience physics, and iteratively go through the vector field reacting to the forces, thus creating a trajectory of sorts through the vector field.
Currently what I'm trying to do is whip up code that would allow me to to start a point within this field and calculate the forces that the particle would feel at that point and then establish a resultant force vector that would indicate the next path of movement throughout the vector space.
Right now I'm stuck in the theoretical aspects of the code, as I'm trying to think through how the particle would feel vectors at a distance.
Any suggestions on ways to attack this problem within MatLab or relevant equations to use?
In order to run my code, you'll need read_grib.r4 and to compile that mex file here is a link to a zip with the code and the required files.
https://www.dropbox.com/s/uodvixdff764frq/WindSim_StackOverflow_Files.zip
I would try to interpolate the wind vector from the adjecent ones. You seem to have a regular grid, that should be no problem. (You can use interp3 for this)
Afterwards, you can use any differential-equation solver for your problem, as you have basically a field of gradients and an initial value. Forward euler would be the simplest one but need a small step size. (N.B.: Your field should be a gradient field)
You may read about this in Wikipedia: http://en.wikipedia.org/wiki/Vector_field#Flow_curves
In response to comment #1:
Yes. In a regular grid, any (arbitrary chosen) point will have eight neighbors. interp3 will so a trilinear interpolation to determine an interpolated gradient vector.
If you use forward-euler, you will then move a small distance in that direction. There you interpolate a gradient and go a small step into this new direction and so on. What happens are two things:
You get a series of points that lie on a streamline and thus form the trajectory of a particle moving along the field
Get large errors, the further you move and the larger the step size is. Use a small step size or use a better solver (Runge-Kutta comes to my mind)
If all you want is plotting, then the streamline function might help.