Running k-medoids algorithm in ELKI - cluster-analysis

I am trying to run ELKI to implement k-medoids (for k=3) on a dataset in the form of an arff file (using the ARFFParser in ELKI):
The dataset is of 7 dimensions, however the clustering results that I obtain show clustering only on the level of one dimension, and does this only for 3 attributes, ignoring the rest. Like this:
Could anyone help with how can I obtain a clustering visualization for all dimensions?

ELKI is mostly used with numerical data.
Currently, ELKI does not have a "mixed" data type, unfortunately.
The ARFF parser will split your data set into multiple relations:
a 1-dimensional numerical relation containing age
a LabelList relation storing sex and region
a 1-dimensional numerical relation containing salary
a LabelList relation storing married
a 1-dimensional numerical relation storing children
a LabelList relation storing car
Apparently it has messed up the relation labels, though. But other than that, this approach works perfectly well with arff data sets that consist of numerical data + a class label, for example - the use case this parser was written for. It is a well-defined and consistent behaviour, though not what you expected it to do.
The algorithm then ran on the first relation it could work with, i.e. age only.
So here is what you need to do:
Implement an efficient data type for storing mixed type data.
Modify the ARFF parser to produce a single relation of mixed type data.
Implement a distance function for this type, because the lack of a mixed type data representation means we do not have a distance to go with it either.
Choose this new distance function in k-Medoids.
Share the code, so others do not have to do this again. ;-)
Alternatively, you could write a script to encode your data in a numerical data set, then it will work fine. But in my opinion, the results of one-hot-encoding etc. are not very convincing usually.

Related

ELKI clustering FDBSCAN algorithm

Please could you show me example of input file for FDBSCAN in ELKI. I got error like this:
Task failed
de.lmu.ifi.dbs.elki.data.type.NoSupportedDataTypeException: No data type found satisfying: UncertainObject,field
Available types: DBID DoubleVector,dim=2
at de.lmu.ifi.dbs.elki.database.AbstractDatabase.getRelation(AbstractDatabase.java:126)
at de.lmu.ifi.dbs.elki.algorithm.clustering.uncertain.FDBSCANNeighborPredicate.instantiate(FDBSCANNeighborPredicate.java:131)
at de.lmu.ifi.dbs.elki.algorithm.clustering.gdbscan.GeneralizedDBSCAN.run(GeneralizedDBSCAN.java:122)
at de.lmu.ifi.dbs.elki.algorithm.clustering.gdbscan.GeneralizedDBSCAN.run(GeneralizedDBSCAN.java:79)
at de.lmu.ifi.dbs.elki.workflow.AlgorithmStep.runAlgorithms(AlgorithmStep.java:105)
at de.lmu.ifi.dbs.elki.KDDTask.run(KDDTask.java:112)
at de.lmu.ifi.dbs.elki.application.KDDCLIApplication.run(KDDCLIApplication.java:61)
at [...]
FDBSCAN requires data of the type UncertainObject, i.e. objects with uncertainty information.
If you simply load a CSV file, the data will be certain, and you cannot use uncertain clustering.
There are several ways of modeling uncertainty. These implement as filters in the typeconversions package.
UncertainSplitFilter can split a vector of length k*N into k possible instances, each of length N with uniform weight.
WeightedUncertainSplitFilter is similar, but every instance can also have a weight associated.
UncertainifyFilter can simulate uncertainty by e.g. assuming a Gaussian or Uniform distribution around the original vector.
UniformUncertainifier (the U-Model, see Javadoc of UniformContinuousUncertainObject)
SimpleGaussianUncertainifier (see Javadoc of SimpleGaussianContinuousUncertainObject)
UnweightedDiscreteUncertainifier (BID Model, see Javadoc of WeightedDiscreteUncertainObject)
WeightedDiscreteUncertainifier (as above)
or add your own uncertainty information by extending the API!

Multiclass classification in SVM

I have been working on "Script identification from bilingual documents".
I want to classify the pages/blocks as either Eng(class 1), Hindi (class 2) or Mixed using libsvm in matlab. but the problem is that the training data i have consists of samples corresponding to Hindi and english pages/blocks only but no mixed pages.
The test data i want to give may consists of Mixed pages/blocks also, in that case i want it to be classified as "Mixed". I am planning to do it using confidence score or probability values. like if the prob value of class 1 is greater than a threshold (say 0.8) and prob value of class 2 is less than a threshold say(0.05) then it will be classified as class 1, and class 2 vice-versa. but if aforementioned two conditions dont satisfy then i want to classify it as "Mixed".
The third return value from the "libsvmpredict" is prob_values and i was planning to go ahead with this prob_values to decide whether the testdata is Hindi, English or Mixed. but at few places i learnt that "libsvmpredict" does not produce the actual prob_values.
Is there any way which can help me to classify the test data into 3 classes( Hindi, English, Mixed) using training data consisting of only 2 classes in SVM.
This is not the modus operandi for SVMs.
In no way SVMs can predict a given class without knowing it, without knowing how to separate such class from all other classes.
The function svmpredict() in LibSVM actually shows the probability estimates and the greater this value is, the more confident you can be regarding your prediction. But you cannot rely on such values if you have just two classes in order to predict a third class: indeed svmpredict() will return as many decision values as there are classes.
You can go on with your thresholding system (which, again, is not SVM-based) but it most likely fail or give bad performances. Think about that: you have to set up two thresholds and use them in a logic AND manner. The chance of correctly classified non-Mixed documents will indeed drastically decrease.
My suggestion is: instead of wasting time setting up thresholds, with a high chance of bad performances, join some of these texts together or create some new files with some Hindi and some English lines in order to add to your training data some proper Mixed documents and perform a standard 3-classes SVM system.
In order to create such files you can as well use Matlab, which has a pretty decent file I/O functions such as fread(), fwrite(), fprintf(), fscanf(), importdata() and so on...

Unsupervised Anomaly Detection with Mixed Numeric and Categorical Data

I am working on a data analysis project over the summer. The main goal is to use some access logging data in the hospital about user accessing patient information and try to detect abnormal accessing behaviors. Several attributes have been chosen to characterize a user (e.g. employee role, department, zip-code) and a patient (e.g. age, sex, zip-code). There are about 13 - 15 variables under consideration.
I was using R before and now I am using Python. I am able to use either depending on any suitable tools/libraries you guys suggest.
Before I ask any question, I do want to mention that a lot of the data fields have undergone an anonymization process when handed to me, as required in the healthcare industry for the protection of personal information. Specifically, a lot of VARCHAR values are turned into random integer values, only maintaining referential integrity across the dataset.
Questions:
An exact definition of an outlier was not given (it's defined based on the behavior of most of the data, if there's a general behavior) and there's no labeled training set telling me which rows of the dataset are considered abnormal. I believe the project belongs to the area of unsupervised learning so I was looking into clustering.
Since the data is mixed (numeric and categorical), I am not sure how would clustering work with this type of data.
I've read that one could expand the categorical data and let each category in a variable to be either 0 or 1 in order to do the clustering, but then how would R/Python handle such high dimensional data for me? (simply expanding employer role would bring in ~100 more variables)
How would the result of clustering be interpreted?
Using clustering algorithm, wouldn't the potential "outliers" be grouped into clusters as well? And how am I suppose to detect them?
Also, with categorical data involved, I am not sure how "distance between points" is defined any more and does the proximity of data points indicate similar behaviors? Does expanding each category into a dummy column with true/false values help? What's the distance then?
Faced with the challenges of cluster analysis, I also started to try slicing the data up and just look at two variables at a time. For example, I would look at the age range of patients accessed by a certain employee role, and I use the quartiles and inter-quartile range to define outliers. For categorical variables, for instance, employee role and types of events being triggered, I would just look at the frequency of each event being triggered.
Can someone explain to me the problem of using quartiles with data that's not normally distributed? And what would be the remedy of this?
And in the end, which of the two approaches (or some other approaches) would you suggest? And what's the best way to use such an approach?
Thanks a lot.
You can decide upon a similarity measure for mixed data (e.g. Gower distance).
Then you can use any of the distance-based outlier detection methods.
You can use k-prototypes algorithm for mixed numeric and categorical attributes.
Here you can find a python implementation.

In preprocessing data with high cardinality, do you hash first or one-hot-encode first?

Hashing reduces dimensionality while one-hot-encoding essentially blows up the feature space by transforming multi-categorical variables into many binary variables. So it seems like they have opposite effects. My questions are:
What is the benefit of doing both on the same dataset? I read something about capturing interactions but not in detail - can somebody elaborate on this?
Which one comes first and why?
Binary one-hot-encoding is needed for feeding categorical data to linear models and SVMs with the standard kernels.
For example, you might have a feature which is a day of a week. Then you create a one-hot-encoding for each of them.
1000000 Sunday
0100000 Monday
0010000 Tuesday
...
0000001 Saturday
Feature-hashing is mostly used to allow for significant storage compression for parameter vectors: one hashes the high dimensional input vectors into a lower dimensional feature space. Now the parameter vector of a resulting classifier can therefore live in the lower-dimensional space instead of in the original input space. This can be used as a method of dimension reduction thus usually you expect to trade a bit of decreasing of performance with significant storage benefit.
The example in wikipedia is a good one. Suppose your have three documents:
John likes to watch movies.
Mary likes movies too.
John also likes football.
Using a bag-of-words model, you first create below document to words model. (each row is a document, each entry in the matrix indicates whether a word appears in the document).
The problem with this process is that such dictionaries take up a large amount of storage space, and grow in size as the training set grows.
Instead of maintaining a dictionary, a feature vectorizer that uses the hashing trick can build a vector of a pre-defined length by applying a hash function h to the features (e.g., words) in the items under consideration, then using the hash values directly as feature indices and updating the resulting vector at those indices.
Suppose you generate below hashed features with 3 buckets. (you apply k different hash functions to the original features and count how many times the hashed value hit a bucket).
bucket1 bucket2 bucket3
doc1: 3 2 0
doc2: 2 2 0
doc3: 1 0 2
Now you successfully transformed the features in 9-dimensions to 3-dimensions.
A more interesting application of feature hashing is to do personalization. The original paper of feature hashing contains a nice example.
Imagine you want to design a spam filter but customized to each user. The naive way of doing this is to train a separate classifier for each user, which are unfeasible regarding either training (to train and update the personalized model) or serving (to hold all classifiers in memory). A smart way is illustrated below:
Each token is duplicated and one copy is individualized by concatenating each word with a unique user id. (See USER123_NEU and USER123_Votre).
The bag of words model now holds the common keywords and also use-specific keywords.
All words are then hashed into a low dimensioanl feature space where the document is trained and classified.
Now to answer your questions:
Yes. one-hot-encoding should come first since it is transforming a categorical feature to binary feature to make it consumable by linear models.
You can apply both on the same dataset for sure as long as there is benefit to use the compressed feature-space. Note if you can tolerate the original feature dimension, feature-hashing is not required. For example, in a common digit recognition problem, e.g., MINST, the image is represented by 28x28 binary pixels. The input dimension is only 784. For sure feature hashing won't have any benefit in this case.

Algorithm generation

I have a rather large(not too large but possibly 50+) set of conditions that must be placed on a set of data(or rather the data should be manipulated to fit the conditions).
For example, Suppose I have the a sequence of binary numbers of length n,
if n = 5 then a element in the data might be {0,1,1,0,0} or {0,0,0,1,1}, etc...
BUT there might be a set of conditions such as
x_3 + x_4 = 2
sum(x_even) <= 2
x_2*x_3 = x_4 mod 2
etc...
Because the conditions are quite complex in that they come from experiment(although they can be written down in logic form) and are hard to diagnose I would like instead to use a large sample set of valid data. i.e., Data I know satisfies the conditions and is a pretty large set. i.e., it is easier to collect the data then it is to deduce the conditions that the data must abide by.
Having said that, basically what I'm doing is very similar to neural networks. The difference is, I would like an actual algorithm, in some sense optimal, in some form of code that I can run instead of the network.
It might not be clear what I'm actually trying to do. What I have is a set of data in some raw format that is unique and unambiguous but not appropriate for my needs(in a sense the amount of data is too large).
I need to map the data into another set that actually is ambiguous to some degree but also has certain specific set of constraints that all the data follows(certain things just cannot happen while others are preferred).
The unique constraints and preferences are hard to figure out. That is, the mapping from the non-ambiguous set to the ambiguous set is hard to describe(which is why it is ambiguous). The goal, actually, is to have an unambiguous map by supplying the right constraints if at all possible.
So, on the vein of my initial example, I'm given(or supply) a set of elements and need some way to derive a list of constraints similar to what I've listed.
In a sense, I simply have a set of valid data and train it very similar to neural networks.
Then, after this "Training" I'm given the mapping function I can then use on any element in my dataset and it will produce a new element satisfying the constraint's, or if it can't, will give as close as possible an unambiguous result.
The main difference between neural networks and what I'm trying to achieve is I'd like to be able to use have an algorithm to code to be used instead of having to run a neural network. The difference here is the algorithm would probably be a lot less complex, not need potential retraining, and a lot faster.
Here is a simple example.
Suppose my "training set" are the binary sequences and mappings
01000 => 10000
00001 => 00010
01010 => 10100
00111 => 01110
then from the "Magical Algorithm Finder"(tm) I would get a mapping out like
f(x) = x rol 1 (rol = rotate left)
or whatever way one would want to express it.
Then I could simply apply f(x) to any other element, such as x = 011100 and could apply f to generate a hopefully unambiguous output.
Of course there are many such functions that will work on this example but the goal is to supply enough of the dataset to narrow it down to hopefully a few functions that make the most sense(at the very least will always map the training set correctly).
In my specific case I could easily convert my problem into mapping the set of binary digits of length m to the set of base B digits of length n. The constraints prevents some numbers from having an inverse. e.g., the mapping is injective but not surjective.
My algorithm could be a simple collection if statements acting on the digits if need be.
I think what you are looking for here is an application of Learning Classifier Systems, LCS -wiki. There are actually quite a few LCS open-source applications available, but you may need to experiment with the parameters in order to get a good result.
LCS/XCS/ZCS have the features that you are looking for including individual rules that could be heavily optimized, pressure to reduce the rule-set, and of course a human-readable/understandable set of rules. (Unlike a neural-net)