I have a time data in my Mongo database. Each document equal a minute and contain 60 seconds as objects with value for each. How to get average value of all seconds in one minute?
A document looking like that:
{
"_id" : ObjectId("55575e4062771c26ec5f2287"),
"timestamp" : "2015-05-16T18:12:00.000Z",
"values" : {
"0" : "26.17",
"1" : "26.17",
"2" : "26.17",
...
"58" : "24.71",
"59" : "25.20"
}
}
You could take two approaches here:
Changing the schema and use the aggregation framework to get the average by using the $avg operator OR
Apply Map-Reduce.
Let's look at the first option. Currently as it is, the schema will not make it possible to use the aggregation framework because of the dynamic keys in the values subdocument. The ideal schema that would favour the aggregation framework would have the values field be an array which contains embedded key/value documents like this:
/* 0 */
{
"_id" : ObjectId("5559d66c9bbec0dd0344e4b0"),
"timestamp" : "2015-05-16T18:12:00.000Z",
"values" : [
{
"k" : "0",
"v" : 26.17
},
{
"k" : "1",
"v" : 26.17
},
{
"k" : "2",
"v" : 26.17
},
...
{
"k" : "58",
"v" : 24.71
},
{
"k" : "59",
"v" : 25.20
}
]
}
With MongoDB 3.6 and newer, use the aggregation framework to tranform the hashmaps to an array by using the $objectToArray operator then use $avg to calculate the average.
Consider running the following aggregate pipeline:
db.test.aggregate([
{
"$addFields": {
"values": { "$objectToArray": "$values" }
}
}
])
Armed with this new schema, you would then need to update your collection to change the string values to int by iterating the cursor returned from the aggregate method and using bulkWrite as follows:
var bulkUpdateOps = [],
cursor = db.test.aggregate([
{
"$addFields": {
"values": { "$objectToArray": "$values" }
}
}
]);
cursor.forEach(doc => {
const { _id, values } = doc;
let temp = values.map(item => {
item.key = item.k;
item.value = parseFloat(item.v) || 0;
delete item.k;
delete item.v;
return item;
});
bulkUpdateOps.push({
"updateOne": {
"filter": { _id },
"update": { "$set": { values: temp } },
"upsert": true
}
});
if (bulkUpdateOps.length === 1000) {
db.test.bulkWrite(bulkUpdateOps);
bulkUpdateOps = [];
}
});
if (bulkUpdateOps.length > 0) {
db.test.bulkWrite(bulkUpdateOps);
}
If your MongoDB version does not support the $objectToArray operator in the aggregation framework, then to convert the current schema into the one above takes a bit of native JavaScript functions with the MongoDB find() cursor's forEach() function as follows (assuming you have a test collection):
var bulkUpdateOps = [],
cursor = db.test.find();
cursor.forEach(doc => {
const { _id, values } = doc;
let temp = Object.keys(values).map(k => {
let obj = {};
obj.key = k;
obj.value = parseFloat(doc.values[k]) || 0;
return obj;
});
bulkUpdateOps.push({
"updateOne": {
"filter": { _id },
"update": { "$set": { values: temp } },
"upsert": true
}
});
if (bulkUpdateOps.length === 1000) {
db.test.bulkWrite(bulkUpdateOps);
bulkUpdateOps = [];
}
});
if (bulkUpdateOps.length > 0) {
db.test.bulkWrite(bulkUpdateOps);
}
or
db.test.find().forEach(function (doc){
var keys = Object.keys(doc.values),
values = keys.map(function(k){
var obj = {};
obj.key = k;
obj.value = parseFloat(doc.values[k]) || 0;
return obj;
});
doc.values = values;
db.test.save(doc);
});
The collection will now have the above schema and thus follows the aggregation pipeline that will give you the average time in one minute:
db.test.aggregate([
{
"$fields": {
"average": { "$avg": "$values.value" }
}
}
])
Or for MongoDB 3.0 and lower
db.test.aggregate([
{ "$unwind": "$values" },
{
"$group": {
"_id": "$timestamp",
"average": {
"$avg": "$values.value"
}
}
}
])
For the above document, the output would be:
/* 0 */
{
"result" : [
{
"_id" : "2015-05-16T18:12:00.000Z",
"average" : 25.684
}
],
"ok" : 1
}
As for the other Map-Reduce option, the intuition behind the operation is you would use JavaScript to make the necessary transformations and calculate the final average. You would need to define three functions:
Map
When you tell Mongo to MapReduce, the function you provide as the map function will receive each document as the this parameter. The purpose of the map is to exercise whatever logic you need in JavaScript and then call emit 0 or more times to produce a reducible value.
var map = function(){
var obj = this.values;
var keys = Object.keys(obj);
var values = [];
keys.forEach(function(key){
var val = parseFloat(obj[key]);
var value = { count: 1, qty: val };
emit(this.timestamp, value);
});
};
For each document you need to emit a key and a value. The key is the first parameter to the emit function and represents how you want to group the values (in this case you will be grouping by the timestamp). The second parameter to emit is the value, which in this case is a little object containing the count of documents (always 1) and total value of each individual value object key i.e. for each second within the minute.
Reduce
Next you need to define the reduce function where Mongo will group the items you emit and pass them as an array to this reduce function It's inside the reduce function where you want to do the aggregation calculations and reduce all the objects to a single object.
var reduce = function(key, values) {
var result = {count: 0, total: 0 };
values.forEach(function(value){
result.count += value.count;
result.total += value.qty;
});
return result;
};
This reduce function returns a single result. It's important for the return value to have the same shape as the emitted values. It's also possible for MongoDB to call the reduce function multiple times for a given key and ask you to process a partial set of values, so if you need to perform some final calculation, you can also give MapReduce a finalize function.
Finalize
The finalize function is optional, but if you need to calculate something based on a fully reduced set of data, you'll want to use a finalize function. Mongo will call the finalize function after all the reduce calls for a set are complete. This would be the place to calculate the average of all the second values in a document/timestamp:
var finalize = function (key, value) {
value.average = value.total / value.count;
return value;
};
Putting It Together
With the JavaScript in place, all that is left is to tell MongoDB to execute a MapReduce:
var map = function(){
var obj = this.values;
var keys = Object.keys(obj);
var values = [];
keys.forEach(function(key){
var val = parseFloat(obj[key]);
var value = { count: 1, qty: val };
emit(this.timestamp, value);
});
};
var reduce = function(key, values) {
var result = {count: 0, total: 0 };
values.forEach(function(value){
result.count += value.count;
result.total += value.qty;
});
return result;
};
var finalize = function (key, value) {
value.average = value.total / value.count;
return value;
};
db.collection.mapReduce(
map,
reduce,
{
out: { merge: "map_reduce_example" },
finalize: finalize
}
)
And when you query the output collection map_reduce_example, db.map_reduce_example.find(), you get the result:
/* 0 */
{
"_id" : null,
"value" : {
"count" : 5,
"total" : 128.42,
"average" : 25.684
}
}
References:
A Simple MapReduce with MongoDB and C#
MongoDB docuumentation on mapReduce
This kind of data structure creates lots of conflicts and difficult to handled mongo operations. This case either you changed your schema design. But, if you not able to changed this schema then follow this :
In your schema having two major problem 1> keys dynamic and 2> values of given keys in string so you should use some programming code to calculating avg check below scripts
From ref this first calculated size of values
Object.size = function(obj) {
var size = 0,
key;
for (key in obj) {
if (obj.hasOwnProperty(key)) size++;
}
return size;
};
db.collectionName.find().forEach(function(myDoc) {
var objects = myDoc.values;
var value = 0;
// Get the size of an object
var size = Object.size(objects);
for (var key in objects) {
value = value + parseFloat(objects[key]); // parse string values to float
}
var avg = value / size
print(value);
print(size);
print(avg);
});
Related
I have a collection students with documents in the following format:-
{
_id:"53fe74a866455060e003c2db",
name:"sam",
subject:"maths",
marks:"77"
}
{
_id:"53fe79cbef038fee879263d2",
name:"ryan",
subject:"bio",
marks:"82"
}
{
_id:"53fe74a866456060e003c2de",
name:"tony",
subject:"maths",
marks:"86"
}
I want to get the count of total marks of all the students with subject = "maths". So I should get 163 as sum.
db.students.aggregate([{ $match : { subject : "maths" } },
{ "$group" : { _id : "$subject", totalMarks : { $sum : "$marks" } } }])
Now I should get the following result-
{"result":[{"_id":"53fe74a866455060e003c2db", "totalMarks":163}], "ok":1}
But I get-
{"result":[{"_id":"53fe74a866455060e003c2db", "totalMarks":0}], "ok":1}
Can someone point out what I might be doing wrong here?
Your current schema has the marks field data type as string and you need an integer data type for your aggregation framework to work out the sum. On the other hand, you can use MapReduce to calculate the sum since it allows the use of native JavaScript methods like parseInt() on your object properties in its map functions. So overall you have two choices.
Option 1: Update Schema (Change Data Type)
The first would be to change the schema or add another field in your document that has the actual numerical value not the string representation. If your collection document size is relatively small, you could use a combination of the mongodb's cursor find(), forEach() and update() methods to change your marks schema:
db.student.find({ "marks": { "$type": 2 } }).snapshot().forEach(function(doc) {
db.student.update(
{ "_id": doc._id, "marks": { "$type": 2 } },
{ "$set": { "marks": parseInt(doc.marks) } }
);
});
For relatively large collection sizes, your db performance will be slow and it's recommended to use mongo bulk updates for this:
MongoDB versions >= 2.6 and < 3.2:
var bulk = db.student.initializeUnorderedBulkOp(),
counter = 0;
db.student.find({"marks": {"$exists": true, "$type": 2 }}).forEach(function (doc) {
bulk.find({ "_id": doc._id }).updateOne({
"$set": { "marks": parseInt(doc.marks) }
});
counter++;
if (counter % 1000 === 0) {
// Execute per 1000 operations
bulk.execute();
// re-initialize every 1000 update statements
bulk = db.student.initializeUnorderedBulkOp();
}
})
// Clean up remaining operations in queue
if (counter % 1000 !== 0) bulk.execute();
MongoDB version 3.2 and newer:
var ops = [],
cursor = db.student.find({"marks": {"$exists": true, "$type": 2 }});
cursor.forEach(function (doc) {
ops.push({
"updateOne": {
"filter": { "_id": doc._id } ,
"update": { "$set": { "marks": parseInt(doc.marks) } }
}
});
if (ops.length === 1000) {
db.student.bulkWrite(ops);
ops = [];
}
});
if (ops.length > 0) db.student.bulkWrite(ops);
Option 2: Run MapReduce
The second approach would be to rewrite your query with MapReduce where you can use the JavaScript function parseInt().
In your MapReduce operation, define the map function that process each input document. This function maps the converted marks string value to the subject for each document, and emits the subject and converted marks pair. This is where the JavaScript native function parseInt() can be applied. Note: in the function, this refers to the document that the map-reduce operation is processing:
var mapper = function () {
var x = parseInt(this.marks);
emit(this.subject, x);
};
Next, define the corresponding reduce function with two arguments keySubject and valuesMarks. valuesMarks is an array whose elements are the integer marks values emitted by the map function and grouped by keySubject.
The function reduces the valuesMarks array to the sum of its elements.
var reducer = function(keySubject, valuesMarks) {
return Array.sum(valuesMarks);
};
db.student.mapReduce(
mapper,
reducer,
{
out : "example_results",
query: { subject : "maths" }
}
);
With your collection, the above will put your MapReduce aggregation result in a new collection db.example_results. Thus, db.example_results.find() will output:
/* 0 */
{
"_id" : "maths",
"value" : 163
}
Possible causes your sum is being returned 0 are :
The field you are summing up is not an integer but a string.
Make sure the field contains numeric values.
You are using wrong syntax of $sum.
db.c1.aggregate([{
$group: {
_id: "$item",
price: {
$sum: "$price"
},
count: {
$sum: 1
}
}
}])
Make sure you use "$price" and not "price".
One of the most silly mistake due to which this error occurs is:
Use of space or tab inside the quotes while specifying field name.
Example - "$price " won't work !!! But, "$price" would work.
I have a "mongodb colllenctions" and I'd like to remove the "empty strings"with keys from it.
From this:
{
"_id" : ObjectId("56323d975134a77adac312c5"),
"year" : "15",
"year_comment" : "",
}
{
"_id" : ObjectId("56323d975134a77adac312c5"),
"year" : "",
"year_comment" : "asd",
}
I'd like to gain this result:
{
"_id" : ObjectId("56323d975134a77adac312c5"),
"year" : "15",
}
{
"_id" : ObjectId("56323d975134a77adac312c5"),
"year_comment" : "asd",
}
How could I solve it?
Please try executing following code snippet in Mongo shell which strips fields with empty or null values
var result=new Array();
db.getCollection('test').find({}).forEach(function(data)
{
for(var i in data)
{
if(data[i]==null || data[i]=='')
{
delete data[i]
}
}
result.push(data)
})
print(tojson(result))
Would start with getting a distinct list of all the keys in the collection, use those keys as your query basis and do an ordered bulk update using the Bulk API operations. The update statement uses the $unset operator to remove the fields.
The mechanism to get distinct keys list that you need to assemble the query is possible through Map-Reduce. The following mapreduce operation will populate a separate collection with all the keys as the _id values:
mr = db.runCommand({
"mapreduce": "my_collection",
"map" : function() {
for (var key in this) { emit(key, null); }
},
"reduce" : function(key, stuff) { return null; },
"out": "my_collection" + "_keys"
})
To get a list of all the dynamic keys, run distinct on the resulting collection:
db[mr.result].distinct("_id")
// prints ["_id", "year", "year_comment", ...]
Now given the list above, you can assemble your query by creating an object that will have its properties set within a loop. Normally your query will have this structure:
var keysList = ["_id", "year", "year_comment"];
var query = keysList.reduce(function(obj, k) {
var q = {};
q[k] = "";
obj["$or"].push(q);
return obj;
}, { "$or": [] });
printjson(query); // prints {"$or":[{"_id":""},{"year":""},{"year_comment":""}]}
You can then use the Bulk API (available with MongoDB 2.6 and above) as a way of streamlining your updates for better performance with the query above. Overall, you should be able to have something working as:
var bulk = db.collection.initializeOrderedBulkOp(),
counter = 0,
query = {"$or":[{"_id":""},{"year":""},{"year_comment":""}]},
keysList = ["_id", "year", "year_comment"];
db.collection.find(query).forEach(function(doc){
var emptyKeys = keysList.filter(function(k) { // use filter to return an array of keys which have empty strings
return doc[k]==="";
}),
update = emptyKeys.reduce(function(obj, k) { // set the update object
obj[k] = "";
return obj;
}, { });
bulk.find({ "_id": doc._id }).updateOne({
"$unset": update // use the $unset operator to remove the fields
});
counter++;
if (counter % 1000 == 0) {
// Execute per 1000 operations and re-initialize every 1000 update statements
bulk.execute();
bulk = db.collection.initializeOrderedBulkOp();
}
})
If you need to update a single blank parameter or you prefer to do parameter by parameter, you can use the mongo updateMany functionality:
db.comments.updateMany({year: ""}, { $unset : { year : 1 }})
I have a collection students with documents in the following format:-
{
_id:"53fe74a866455060e003c2db",
name:"sam",
subject:"maths",
marks:"77"
}
{
_id:"53fe79cbef038fee879263d2",
name:"ryan",
subject:"bio",
marks:"82"
}
{
_id:"53fe74a866456060e003c2de",
name:"tony",
subject:"maths",
marks:"86"
}
I want to get the count of total marks of all the students with subject = "maths". So I should get 163 as sum.
db.students.aggregate([{ $match : { subject : "maths" } },
{ "$group" : { _id : "$subject", totalMarks : { $sum : "$marks" } } }])
Now I should get the following result-
{"result":[{"_id":"53fe74a866455060e003c2db", "totalMarks":163}], "ok":1}
But I get-
{"result":[{"_id":"53fe74a866455060e003c2db", "totalMarks":0}], "ok":1}
Can someone point out what I might be doing wrong here?
Your current schema has the marks field data type as string and you need an integer data type for your aggregation framework to work out the sum. On the other hand, you can use MapReduce to calculate the sum since it allows the use of native JavaScript methods like parseInt() on your object properties in its map functions. So overall you have two choices.
Option 1: Update Schema (Change Data Type)
The first would be to change the schema or add another field in your document that has the actual numerical value not the string representation. If your collection document size is relatively small, you could use a combination of the mongodb's cursor find(), forEach() and update() methods to change your marks schema:
db.student.find({ "marks": { "$type": 2 } }).snapshot().forEach(function(doc) {
db.student.update(
{ "_id": doc._id, "marks": { "$type": 2 } },
{ "$set": { "marks": parseInt(doc.marks) } }
);
});
For relatively large collection sizes, your db performance will be slow and it's recommended to use mongo bulk updates for this:
MongoDB versions >= 2.6 and < 3.2:
var bulk = db.student.initializeUnorderedBulkOp(),
counter = 0;
db.student.find({"marks": {"$exists": true, "$type": 2 }}).forEach(function (doc) {
bulk.find({ "_id": doc._id }).updateOne({
"$set": { "marks": parseInt(doc.marks) }
});
counter++;
if (counter % 1000 === 0) {
// Execute per 1000 operations
bulk.execute();
// re-initialize every 1000 update statements
bulk = db.student.initializeUnorderedBulkOp();
}
})
// Clean up remaining operations in queue
if (counter % 1000 !== 0) bulk.execute();
MongoDB version 3.2 and newer:
var ops = [],
cursor = db.student.find({"marks": {"$exists": true, "$type": 2 }});
cursor.forEach(function (doc) {
ops.push({
"updateOne": {
"filter": { "_id": doc._id } ,
"update": { "$set": { "marks": parseInt(doc.marks) } }
}
});
if (ops.length === 1000) {
db.student.bulkWrite(ops);
ops = [];
}
});
if (ops.length > 0) db.student.bulkWrite(ops);
Option 2: Run MapReduce
The second approach would be to rewrite your query with MapReduce where you can use the JavaScript function parseInt().
In your MapReduce operation, define the map function that process each input document. This function maps the converted marks string value to the subject for each document, and emits the subject and converted marks pair. This is where the JavaScript native function parseInt() can be applied. Note: in the function, this refers to the document that the map-reduce operation is processing:
var mapper = function () {
var x = parseInt(this.marks);
emit(this.subject, x);
};
Next, define the corresponding reduce function with two arguments keySubject and valuesMarks. valuesMarks is an array whose elements are the integer marks values emitted by the map function and grouped by keySubject.
The function reduces the valuesMarks array to the sum of its elements.
var reducer = function(keySubject, valuesMarks) {
return Array.sum(valuesMarks);
};
db.student.mapReduce(
mapper,
reducer,
{
out : "example_results",
query: { subject : "maths" }
}
);
With your collection, the above will put your MapReduce aggregation result in a new collection db.example_results. Thus, db.example_results.find() will output:
/* 0 */
{
"_id" : "maths",
"value" : 163
}
Possible causes your sum is being returned 0 are :
The field you are summing up is not an integer but a string.
Make sure the field contains numeric values.
You are using wrong syntax of $sum.
db.c1.aggregate([{
$group: {
_id: "$item",
price: {
$sum: "$price"
},
count: {
$sum: 1
}
}
}])
Make sure you use "$price" and not "price".
One of the most silly mistake due to which this error occurs is:
Use of space or tab inside the quotes while specifying field name.
Example - "$price " won't work !!! But, "$price" would work.
I'm trying to group and count the amount of elements for each group in mongodb 2.0.1, but with no success so far.
My DB schema looks like :
{
"_id" : ObjectId("4ece7544853b4b0941000000"),
"ResultSet" : {
"Results" : [
{
"quality" : 87,
"state" : "Franche-Comté"
}
]
}
}
I've been trying all sort of methods, following different tutorials, but it is each time the same result : an only null group... which I don't understand why.
The best query I have written so far is the following :
db.extract_2000.group( {
cond: { "ResultSet.Results.quality": {$exists: true} },
key: {"ResultSet.Results.state": true},
reduce: function(obj, glob) { glob.total++; glob.quality += obj.ResultSet.Results.quality },
initial: { total: 0, quality: 0 },
finalize: function(glob) {glob.avgquality = glob.quality / glob.total}
})
Which returns (once again) :
[
{
"ResultSet.Results.state" : null,
"total" : 2000,
"quality" : NaN,
"avgquality" : NaN
}
]
What am I doing wrong ?
This simply won't work as written. The key problem is here: key: {"ResultSet.Results.state": true}. ResultSet.Results is an array. When you ask for ResultSet.Results.state you are implying some type of for loop be done here. The group command is simply not capable of this.
Instead try the following M/R:
map = function() {
// Note that we emit once per result
foreach(var i in ResultSet.Results) {
key = this.ResultSet.Results[i];
value = { count: 1,
quality: this.ResultSet.Results[i].quality,
avg_quality: 0
};
emit(key, value);
}
}
reduce = function(key, values) {
// note that results has same fields as emitted value
var results = { count: 0, quality: 0, avg_quality: 0 };
foreach(var i in values){
results.count += values[i].count;
results.quality += values[i].quality;
// ignore avg_quality, we don't use it
}
return results;
}
You will also have to write a finalize for the average.
finalize = function(key, value) {
if (value.count > 0)
value.avg_quality = value.quality / value.count;
return value;
}
The map function
map = function() {
for(var i in this.Results) {
emit(this.Results[i].state,
{quality: this.Results[i].quality, total: 1, avgquality: 0}
);
}
}
The reduce function
reduce = function(key, values) {
var data = {quality: 0, total: 0, avgquality: 0};
for(var i=0; i<values.length; i++) {
data.quality += values[i].quality;
data.total += values[i].total;
}
return data;
}
In finalize function only calculate the avg.
I am trying to change the type of a field from within the mongo shell.
I am doing this...
db.meta.update(
{'fields.properties.default': { $type : 1 }},
{'fields.properties.default': { $type : 2 }}
)
But it's not working!
The only way to change the $type of the data is to perform an update on the data where the data has the correct type.
In this case, it looks like you're trying to change the $type from 1 (double) to 2 (string).
So simply load the document from the DB, perform the cast (new String(x)) and then save the document again.
If you need to do this programmatically and entirely from the shell, you can use the find(...).forEach(function(x) {}) syntax.
In response to the second comment below. Change the field bad from a number to a string in collection foo.
db.foo.find( { 'bad' : { $type : 1 } } ).forEach( function (x) {
x.bad = new String(x.bad); // convert field to string
db.foo.save(x);
});
Convert String field to Integer:
db.db-name.find({field-name: {$exists: true}}).forEach(function(obj) {
obj.field-name = new NumberInt(obj.field-name);
db.db-name.save(obj);
});
Convert Integer field to String:
db.db-name.find({field-name: {$exists: true}}).forEach(function(obj) {
obj.field-name = "" + obj.field-name;
db.db-name.save(obj);
});
Starting Mongo 4.2, db.collection.update() can accept an aggregation pipeline, finally allowing the update of a field based on its own value:
// { a: "45", b: "x" }
// { a: 53, b: "y" }
db.collection.updateMany(
{ a : { $type: 1 } },
[{ $set: { a: { $toString: "$a" } } }]
)
// { a: "45", b: "x" }
// { a: "53", b: "y" }
The first part { a : { $type: 1 } } is the match query:
It filters which documents to update.
In this case, since we want to convert "a" to string when its value is a double, this matches elements for which "a" is of type 1 (double)).
This table provides the code representing the different possible types.
The second part [{ $set: { a: { $toString: "$a" } } }] is the update aggregation pipeline:
Note the squared brackets signifying that this update query uses an aggregation pipeline.
$set is a new aggregation operator (Mongo 4.2) which in this case modifies a field.
This can be simply read as "$set" the value of "a" to "$a" converted "$toString".
What's really new here, is being able in Mongo 4.2 to reference the document itself when updating it: the new value for "a" is based on the existing value of "$a".
Also note "$toString" which is a new aggregation operator introduced in Mongo 4.0.
In case your cast isn't from double to string, you have the choice between different conversion operators introduced in Mongo 4.0 such as $toBool, $toInt, ...
And if there isn't a dedicated converter for your targeted type, you can replace { $toString: "$a" } with a $convert operation: { $convert: { input: "$a", to: 2 } } where the value for to can be found in this table:
db.collection.updateMany(
{ a : { $type: 1 } },
[{ $set: { a: { $convert: { input: "$a", to: 2 } } } }]
)
For string to int conversion.
db.my_collection.find().forEach( function(obj) {
obj.my_value= new NumberInt(obj.my_value);
db.my_collection.save(obj);
});
For string to double conversion.
obj.my_value= parseInt(obj.my_value, 10);
For float:
obj.my_value= parseFloat(obj.my_value);
db.coll.find().forEach(function(data) {
db.coll.update({_id:data._id},{$set:{myfield:parseInt(data.myfield)}});
})
all answers so far use some version of forEach, iterating over all collection elements client-side.
However, you could use MongoDB's server-side processing by using aggregate pipeline and $out stage as :
the $out stage atomically replaces the existing collection with the
new results collection.
example:
db.documents.aggregate([
{
$project: {
_id: 1,
numberField: { $substr: ['$numberField', 0, -1] },
otherField: 1,
differentField: 1,
anotherfield: 1,
needolistAllFieldsHere: 1
},
},
{
$out: 'documents',
},
]);
To convert a field of string type to date field, you would need to iterate the cursor returned by the find() method using the forEach() method, within the loop convert the field to a Date object and then update the field using the $set operator.
Take advantage of using the Bulk API for bulk updates which offer better performance as you will be sending the operations to the server in batches of say 1000 which gives you a better performance as you are not sending every request to the server, just once in every 1000 requests.
The following demonstrates this approach, the first example uses the Bulk API available in MongoDB versions >= 2.6 and < 3.2. It updates all
the documents in the collection by changing all the created_at fields to date fields:
var bulk = db.collection.initializeUnorderedBulkOp(),
counter = 0;
db.collection.find({"created_at": {"$exists": true, "$type": 2 }}).forEach(function (doc) {
var newDate = new Date(doc.created_at);
bulk.find({ "_id": doc._id }).updateOne({
"$set": { "created_at": newDate}
});
counter++;
if (counter % 1000 == 0) {
bulk.execute(); // Execute per 1000 operations and re-initialize every 1000 update statements
bulk = db.collection.initializeUnorderedBulkOp();
}
})
// Clean up remaining operations in queue
if (counter % 1000 != 0) { bulk.execute(); }
The next example applies to the new MongoDB version 3.2 which has since deprecated the Bulk API and provided a newer set of apis using bulkWrite():
var bulkOps = [];
db.collection.find({"created_at": {"$exists": true, "$type": 2 }}).forEach(function (doc) {
var newDate = new Date(doc.created_at);
bulkOps.push(
{
"updateOne": {
"filter": { "_id": doc._id } ,
"update": { "$set": { "created_at": newDate } }
}
}
);
})
db.collection.bulkWrite(bulkOps, { "ordered": true });
To convert int32 to string in mongo without creating an array just add "" to your number :-)
db.foo.find( { 'mynum' : { $type : 16 } } ).forEach( function (x) {
x.mynum = x.mynum + ""; // convert int32 to string
db.foo.save(x);
});
What really helped me to change the type of the object in MondoDB was just this simple line, perhaps mentioned before here...:
db.Users.find({age: {$exists: true}}).forEach(function(obj) {
obj.age = new NumberInt(obj.age);
db.Users.save(obj);
});
Users are my collection and age is the object which had a string instead of an integer (int32).
You can easily convert the string data type to numerical data type.
Don't forget to change collectionName & FieldName.
for ex : CollectionNmae : Users & FieldName : Contactno.
Try this query..
db.collectionName.find().forEach( function (x) {
x.FieldName = parseInt(x.FieldName);
db.collectionName.save(x);
});
I need to change datatype of multiple fields in the collection, so I used the following to make multiple data type changes in the collection of documents. Answer to an old question but may be helpful for others.
db.mycoll.find().forEach(function(obj) {
if (obj.hasOwnProperty('phone')) {
obj.phone = "" + obj.phone; // int or longint to string
}
if (obj.hasOwnProperty('field-name')) {
obj.field-name = new NumberInt(obj.field-name); //string to integer
}
if (obj.hasOwnProperty('cdate')) {
obj.cdate = new ISODate(obj.cdate); //string to Date
}
db.mycoll.save(obj);
});
demo change type of field mid from string to mongo objectId using mongoose
Post.find({}, {mid: 1,_id:1}).exec(function (err, doc) {
doc.map((item, key) => {
Post.findByIdAndUpdate({_id:item._id},{$set:{mid: mongoose.Types.ObjectId(item.mid)}}).exec((err,res)=>{
if(err) throw err;
reply(res);
});
});
});
Mongo ObjectId is just another example of such styles as
Number, string, boolean that hope the answer will help someone else.
I use this script in mongodb console for string to float conversions...
db.documents.find({ 'fwtweaeeba' : {$exists : true}}).forEach( function(obj) {
obj.fwtweaeeba = parseFloat( obj.fwtweaeeba );
db.documents.save(obj); } );
db.documents.find({ 'versions.0.content.fwtweaeeba' : {$exists : true}}).forEach( function(obj) {
obj.versions[0].content.fwtweaeeba = parseFloat( obj.versions[0].content.fwtweaeeba );
db.documents.save(obj); } );
db.documents.find({ 'versions.1.content.fwtweaeeba' : {$exists : true}}).forEach( function(obj) {
obj.versions[1].content.fwtweaeeba = parseFloat( obj.versions[1].content.fwtweaeeba );
db.documents.save(obj); } );
db.documents.find({ 'versions.2.content.fwtweaeeba' : {$exists : true}}).forEach( function(obj) {
obj.versions[2].content.fwtweaeeba = parseFloat( obj.versions[2].content.fwtweaeeba );
db.documents.save(obj); } );
And this one in php)))
foreach($db->documents->find(array("type" => "chair")) as $document){
$db->documents->update(
array('_id' => $document[_id]),
array(
'$set' => array(
'versions.0.content.axdducvoxb' => (float)$document['versions'][0]['content']['axdducvoxb'],
'versions.1.content.axdducvoxb' => (float)$document['versions'][1]['content']['axdducvoxb'],
'versions.2.content.axdducvoxb' => (float)$document['versions'][2]['content']['axdducvoxb'],
'axdducvoxb' => (float)$document['axdducvoxb']
)
),
array('$multi' => true)
);
}
The above answers almost worked but had a few challenges-
Problem 1: db.collection.save no longer works in MongoDB 5.x
For this, I used replaceOne().
Problem 2: new String(x.bad) was giving exponential number
I used "" + x.bad as suggested above.
My version:
let count = 0;
db.user
.find({
custID: {$type: 1},
})
.forEach(function (record) {
count++;
const actualValue = record.custID;
record.custID = "" + record.custID;
console.log(`${count}. Updating User(id:${record._id}) from old id [${actualValue}](${typeof actualValue}) to [${record.custID}](${typeof record.custID})`)
db.user.replaceOne({_id: record._id}, record);
});
And for millions of records, here are the output (for future investigation/reference)-