Check a sequence inside another sequence in matlab - matlab

I have some sequences:
{B < A < C < D < E},
{A < B < D < E < C}
How to check B < E in the above strings or not?
Thanks!

You can use regexp:
inputs = {'{B < A < C < D < E}', '{A < B < D < E < C}' };
res = regexp( inputs, 'B.*<.*E' )
Results with
res =
[2] [6]
That is res{ii} is the first location of B in the input string ii. If res{ii} is empty it means B < E is not in the ii-th string.

Related

How to write a specification of a method that char array convert to an integer in dafny?

method atoi(a:array<char>) returns(r:int)
requires a.Length>0
requires forall k :: 0<= k <a.Length ==> (a[k] as int) - ('0' as int) <= 9
ensures ??
{
var j:int := 0;
while j < a.Length
invariant ??
{
r := r*10 + (a[j] as int) - ('0' as int);
j := j + 1;
}
}
How to write "ensures" for the atoi method and "invariant" for the while loops in dafny?
I express the idea "each bit of the return value corresponds to each bit of the character array" as following:
// Ten to the NTH power
// e.g.: ten_pos_pow(2) == 10*10 == 100
function ten_pos_pow(p:int):int
requires p>=0
ensures ten_pos_pow(p) >= 1
{
if p==0 then 1 else
10*ten_pos_pow(p-1)
}
// Count from right to left, the ith digit of integer v (i starts from zero)
// e.g.: num_in_int(123,0) == 3 num_in_int(123,1) == 2 num_in_int(123,2) == 1
function num_in_int(v:int,i:int) : int
requires i>=0
{
(v % ten_pos_pow(i+1))/ten_pos_pow(i)
}
method atoi(a:array<char>) returns(r:int)
requires a.Length>0
requires forall k :: 0<= k <a.Length ==> (a[k] as int) - ('0' as int) <= 9
ensures forall k :: 0<= k < a.Length ==> ((a[k] as int) - ('0' as int)) == num_in_int(r,a.Length-k-1)
{
var i:int := 0;
r := 0;
while i < a.Length
invariant 0<= i <= a.Length
invariant forall k :: 0<= k < i ==> ((a[k] as int) - ('0' as int)) == num_in_int(r,i-k-1) // loop invariant violation
{
r := r*10 + (a[i] as int) - ('0' as int);
i := i + 1;
}
}
But the loops invariant violation. How to write a correct and provable specification?

Trigger Dafny with multisets

This lemma verifies, but it raises the warning Not triggers found:
lemma multisetPreservesGreater (a:seq<int>, b:seq<int>, c:int, f:int, x:int)
requires |a|==|b| && 0 <= c <= f + 1 <= |b|
requires (forall j :: c <= j <= f ==> a[j] >= x)
requires multiset(a[c..f+1]) == multiset(b[c..f+1])
ensures (forall j :: c <= j <= f ==> b[j] >= x)
{
assert (forall j :: j in multiset(a[c..f+1]) ==> j in multiset(b[c..f+1]));
}
I do not know how to instantiate this trigger (cannot instantiate it as a function, or can I?). Any help?
Edit: Maybe I can instantiate a method f such that takes an array and inserts it in a multiset, and therefore I can trigger f(a), but that does not mention i. I will try.
Here's one way to transform the program so that there are no trigger warnings.
function SeqRangeToMultiSet(a: seq<int>, c: int, f: int): multiset<int>
requires 0 <= c <= f + 1 <= |a|
{
multiset(a[c..f+1])
}
lemma multisetPreservesGreater (a:seq<int>, b:seq<int>, c:int, f:int, x:int)
requires |a|==|b| && 0 <= c <= f + 1 <= |b|
requires (forall j :: c <= j <= f ==> a[j] >= x)
requires multiset(a[c..f+1]) == multiset(b[c..f+1])
ensures (forall j :: c <= j <= f ==> b[j] >= x)
{
assert forall j :: j in SeqRangeToMultiSet(a, c, f) ==> j in SeqRangeToMultiSet(b, c, f);
forall j | c <= j <= f
ensures b[j] >= x
{
assert b[j] in SeqRangeToMultiSet(b, c, f);
}
}
The point is that we introduce the function SeqRangeToMultiSet to stand for a subexpression that is not a valid trigger (because it contains arithmetic). Then SeqRangeToMultiSet itself can be the trigger.
The downside of this approach is that it decreases automation. You can see that we had to add a forall statement to prove the postcondition. The reason is that we need to mention the trigger, which does not appear in the post condition.

How to use string.split() without foreach()?

Write a program in Scala that reads an String from the keyboard and counts the number of characters, ignoring if its UpperCase or LowerCase
ex: Avocado
R: A = 2; v = 1; o = 2; c = 1; d = 2;
So, i tried to do it with two fors iterating over the string, and then a conditional to transform the character in the position (x) to Upper and compare with the character in the position (y) which is the same position... basically i'm transforming the same character so i can increment in the counter ex: Ava -> A = 2; v = 1;
But with this logic when i print the result it comes with:
ex: Avocado
R: A = 2; v = 1; o = 2; c = 1; a = 2; d = 1; o = 2;
its repeting the same character Upper or Lower in the result...
so my teacher asked us to resolve this using the split method and yield of Scala but i dunno how to use the split without forEach() that he doesnt allow us to use.
sorry for the bad english
object ex8 {
def main(args: Array[String]): Unit = {
println("Write a string")
var string = readLine()
var cont = 0
for (x <- 0 to string.length - 1) {
for (y <- 0 to string.length - 1) {
if (string.charAt(x).toUpper == string.charAt(y).toUpper)
cont += 1
}
print(string.charAt(x) + " = " + cont + "; ")
cont = 0
}
}
}
But with this logic when i print the result it comes with:
ex: Avocado
R: A = 2; V = 1; o = 2; c = 1; a = 2; d = 1; o = 2;
Scala 2.13 has added a very handy method to cover this sort of thing.
inputStr.groupMapReduce(_.toUpper)(_ => 1)(_+_)
.foreach{case (k,v) => println(s"$k = $v")}
//A = 2
//V = 1
//C = 1
//O = 2
//D = 1
It might be easier to group the individual elements of the String (i.e. a collection of Chars, made case-insensitive with toLower) to aggregate their corresponding size using groupBy/mapValues:
"Avocado".groupBy(_.toLower).mapValues(_.size)
// res1: scala.collection.immutable.Map[Char,Int] =
// Map(a -> 2, v -> 1, c -> 1, o -> 2, d -> 1)
Scala 2.11
Tried with classic word count approach of map => group => reduce
val exampleStr = "Avocado R"
exampleStr.
toLowerCase.
trim.
replaceAll(" +","").
toCharArray.map(x => (x,1)).groupBy(_._1).
map(x => (x._1,x._2.length))
Answer :
exampleStr: String = Avocado R
res3: scala.collection.immutable.Map[Char,Int] =
Map(a -> 2, v -> 1, c -> 1, r -> 1, o -> 2, d -> 1)

coq Basics: bin_to_nat function

I am passing Logical Foundations course and became stuck upon the last excersize of Basics:
Having binary number write a converter to it's unary representation:
Inductive bin : Type :=
| Z
| A (n : bin)
| B (n : bin).
Fixpoint bin_to_nat (m:bin) : nat :=
(* What to do here? *)
I solved the problem with a recursive function in C. The only thing, I used "0" istead of "A" and "1" instead of "B".
#include <stdio.h>
unsigned int pow2(unsigned int power)
{
if(power != 0)
return 2 << (power - 1);
else
return 1;
}
void rec_converter(char str[], size_t i)
{
if(str[i] == 'Z')
printf("%c", 'Z');
else if(str[i] == '0')
rec_converter(str, ++i);
else if(str[i] == '1')
{
unsigned int n = pow2(i);
for (size_t j = 0; j < n; j++)
{
printf("%c", 'S');
}
rec_converter(str, ++i);
}
}
int main(void)
{
char str[] = "11Z";
rec_converter(str, 0);
printf("\n");
return 0;
}
My problem now is how to write this code in coq:
unsigned int n = pow2(i);
for (size_t j = 0; j < n; j++)
{
printf("%c", 'S');
}
rec_converter(str, ++i);
The main difference between your code and the Coq code is that the Coq code ought to return the natural number, rather than printing it. That means we'll need to keep track of everything that your solution printed and return the result all at once.
Since printing an S means that the answer is the successor of whatever else is printed, we'll need a function that can take the 2^(n)th successor of a natural number. There are various ways to do this, but I'd suggest recursion on n and noting that the 2^(n + 1)th successor of x is the 2^(n)th successor of the 2^(n)th successor of x.
That should be enough to get what you want.
unsigned int n = pow2(i);
for (size_t j = 0; j < n; j++)
{
printf("%c", 'S');
}
rec_converter(str, ++i);
can be written (in pseudo-Coq) as
pow2_succ i (rec_converter str (S i)).
However, one other thing to note: you may not be able to directly access the ith "character" of the input, but this shouldn't be a problem. When you write your function as a Fixpoint
Fixpoint rec_converter (n: bin) (i: nat): nat :=
match n with
| Z => 0
| A m => ...
| B m => ...
end.
the first "character" of m will be the second "character" of the original input. So you'll just need to access the first "character", which is exactly what a Fixpoint does.
For the question on computing powers of 2, you should look at the following file, provided in the Coq libraries (at least up to version 8.9):
https://coq.inria.fr/distrib/current/stdlib/Coq.Init.Nat.html
This file contains a host of functions around the natural numbers, they could all be used as illustrations about how to program with Coq and this datatype.
Fixpoint bin_to_nat (m:bin) : nat :=
match m with
| Z => O
| A n =>2 * (bin_to_nat n)
| B n =>2 * (bin_to_nat n) + 1
end.
see: coq art's 2004. P167-P168. ( How to understand 'positive' type in Coq)

How are these boolean expressions (truth tables) equivalent?

I am trying to better understand boolean equivalence but this example has me a little stuck.
I am referring to this website: http://chortle.ccsu.edu/java5/Notes/chap40B/ch40B_9.html
It makes sense, but doesn't at the same time... it says that they are equivalent, but the true/false values don't add up/align in a way that makes them out to be equivalent as the table shows they are. Could someone explain this to me?
!(A && B) <-- first expression
(C || D) <-- second expression
The last columns refers to the equivalency of the two expressions, which yes, they are equivalent according to the table. However, I just don't get how the two expressions are equivalent. If A = F, B = F --> T, wouldn't C = F, D = F --> T as well?
A B C D
--------------------
F F T T T
F T T F T
T F F T T
T T F F F
You are confusing yourself when trying to reduce it from the actual expression to single letter variables. On referring the actual link, it would appear that the variables you use can be mapped to the original expressions as follows:
A = speed > 2000
B = memory > 512
C = speed <= 2000
D = memory <= 512
If you look at it, C equals !A and D equals !B. So the expression (C || D) is effectively !((!A) || (!B)). By De Morgan's Law, that is the same as !(A && B).
This table is explaining that !(A && B) is equivalent to !A || !B. The columns C and D appear to be defined as C = !A and D = !B. The last column is C || D
So A = F, B = F certainly implies !(A && B). In this case C = D = T, and so also C || D = T.