Creating a for-loop that stores values in a new variable - matlab

I'm quite new to Matlab so excuse me for the basic question.
I need to make a for-loop that repeats it's self 384 times.
So :
for i=1:384
I now need the for loop to check if 2 certain variables have the value 1 through 10, and then let them store this in a new variable with that value.
So:
if x==1
somevariable = 1
elseif x== 2
saomevariable = 2
..
..
..
elseif y = 1
someothervariable = 1
etc etc.
Is there a way to write this more efficient?
Thank you!

The first think you can do is:
if(x >= 1 && x <= 10)
somevariable=x;
end
if(y >= 1 && y <= 10)
someohtervariable=y;
end
If you could post more information about "x" and "y", perhaps your script can be further "improved".
Hope this helps.

Related

How to print ONCE if there are multiple correct answers? (MATLAB)

So I have arr = randi([0,20],20,1). I want to show: If there are numbers less than 5, fprintf('Yes\n') only once. Im using a for loop (for i = 1 : length(arr)) and indexing it.
As your description, maybe you need if statement within for loop like below
for i = 1:length(arr)
if arr(i) < 5
fprintf('Yes\n');
break
end
end
If you want to print Yes once, you can try
if any(arr < 5)
fprintf('Yes\n')
endif
If you don't want to use break, the code below might be an option
for i = 1:min(find(arr <5))
if (arr(i) < 5)
fprintf('Yes\n');
end
end
You can use a break statement upon finding the first value under 5 and printing the Yes statement.
Using a break Statement:
arr = randi([0,20],20,1);
for i = 1: length(arr)
if arr(i) < 5
fprintf("Yes\n");
break;
end
end
Extension:
By Using any() Function:
Alternatively, if you'd like to concise it down without the need for a for-loop the any() function can be used to determine if any values within the array meet a condition in this case arr < 5.
arr = randi([0,20],20,1);
if(any(arr < 5))
fprintf("Yes\n");
end
By Using a While Loop:
Check = 0;
arr = randi([0,20],20,1);
i = 1;
while (Check == 0 && i < length(arr))
if arr(i) < 5
fprintf("Yes\n");
Check = 1;
end
i = i + 1;
end

How does this recursion work? Can you explain how they got the output?

function fnum = fib(n)
if (n == 1) || (n == 2)
fnum = 1;
else
fnum = fib(n-1) + fib(n-2);
end
Can you explain how does each step outputs for the given input. For example inputting 7 gives me 13, 5 gives me 5, but I am not able to track how. I would highly appreciate your reply.
Recursion basically means that the function calls itself.
If we follow your function for fib(3), you will see that what it does is call fib(2)+fib(1). The values of these are defined, and are 1, so it will return 2.
If you call it with fib(4), it will go and compute fib(3)+fib(2). You already know what fib(3) does (see previous paragraph), and we already mentioned that fib(2) returns 1.
If you call it with fib(5) it will go and compute fib(4)+fib(3). See previous paragraph.
This is a very useful way of programming as it is a very simple function to compute something that is arguably more complicated. The most important thing is that you make sure that any recursive function has strong stopping criteria, else it can go forever!
Do you know how Fibonacci series is defined? This function implements that recursively.
Longer answer
Fibonacci series is defined as
n(1) = 1
n(2) = 1
n(k+1) = n(k) + n(k-1)
So when you put 5 as argument, the expansion becomes
n(4+1) = n(4)+n(3)
= n(3)+n(2)+n(2)+n(1)
= n(2)+n(1)+1+1+1
= 1+1+1+1+1
= 5
A much easier back of envelop method is to start from first index and add last two terms to arrive at the next.
1, 1, 2 <- (1+1), 3 <- (2+1), 5 <- (3+2), ...
The Fibonnacci series is defined as f(1) = 1, f(2) = 1 and for all n > 2, f(n) = f(n-1) + f(n-2)
So when you call fib(1) it returns 1 same for fib(2). But when you call fib(3) it returns fib(3-1) + fib(3-2) which is fib(2) + fib(1) = 2. And then when you call fib(4)it returns fib(3) + fib(2) = (fib(2) + fib(1)) + fib(1) = 3. And recursively the fibonnaci series is equal to 1, 1, 3, 5, 8, 13, 21, ...
For the code when n is different than 1 or 2 it call the function fib recursively. And when is equals to 1 or 2 it returns 1.

remove duplicates in a table (rexx language)

I have a question about removing duplicates in a table (rexx language), I am on netphantom applications that are using the rexx language.
I need a sample on how to remove the duplicates in a table.
I do have a thoughts on how to do it though, like using two loops for these two tables which are A and B, but I am not familiar with this.
My situation is:
rc = PanlistInsertData('A',0,SAMPLE)
TABLE A (this table having duplicate data)
123
1
1234
12
123
1234
I need to filter out those duplicates data into TABLE B like this:
123
1234
1
12
You can use lookup stem variables to test if you have already found a value.
This should work (note I have not tested so there could be syntax errors)
no=0;
yes=1
lookup. = no /* initialize the stem to no, not strictly needed */
j=0
do i = 1 to in.0
v = in.i
if lookup.v <> yes then do
j = j + 1
out.j = v
lookup.v = yes
end
end
out.0 = j
You can eliminate the duplicates by :
If InStem first element, Move the element to OutStem Else check all the OutStem elements for the current InStem element
If element is found, Iterate to the next InStem element Else add InStem element to OutStem
Code Snippet :
/*Input Stem - InStem.
Output Stem - OutStem.
Array Counters - I, J, K */
J = 1
DO I = 1 TO InStem.0
IF I = 1 THEN
OutStem.I = InStem.I
ELSE
DO K = 1 TO J
IF (InStem.I ?= OutStem.K) & (K = J) THEN
DO
J = J + 1
OutStem.J = InStem.I
END
ELSE
DO
IF (InStem.I == OutStem.K) THEN
ITERATE I
END
END
END
OutStem.0 = J
Hope this helps.

speed up prime number generating

I have written a program that generates prime numbers . It works well but I want to speed it up as it takes quite a while for generating the all the prime numbers till 10000
var list = [2,3]
var limitation = 10000
var flag = true
var tmp = 0
for (var count = 4 ; count <= limitation ; count += 1 ){
while(flag && tmp <= list.count - 1){
if (count % list[tmp] == 0){
flag = false
}else if ( count % list[tmp] != 0 && tmp != list.count - 1 ){
tmp += 1
}else if ( count % list[tmp] != 0 && tmp == list.count - 1 ){
list.append(count)
}
}
flag = true
tmp = 0
}
print(list)
Two simple improvements that will make it fast up through 100,000 and maybe 1,000,000.
All primes except 2 are odd
Start the loop at 5 and increment by 2 each time. This isn't going to speed it up a lot because you are finding the counter example on the first try, but it's still a very typical improvement.
Only search through the square root of the value you are testing
The square root is the point at which a you half the factor space, i.e. any factor less than the square root is paired with a factor above the square root, so you only have to check above or below it. There are far fewer numbers below the square root, so you should check the only the values less than or equal to the square root.
Take 10,000 for example. The square root is 100. For this you only have to look at values less than the square root, which in terms of primes is roughly 25 values instead of over 1000 checks for all primes less than 10,000.
Doing it even faster
Try another method altogether, like a sieve. These methods are much faster but have a higher memory overhead.
In addition to what Nick already explained, you can also easily take advantage of the following property: all primes greater than 3 are congruent to 1 or -1 mod 6.
Because you've already included 2 and 3 in your initial list, you can therefore start with count = 6, test count - 1 and count + 1 and increment by 6 each time.
Below is my first attempt ever at Swift, so pardon the syntax which is probably far from optimal.
var list = [2,3]
var limitation = 10000
var flag = true
var tmp = 0
var max = 0
for(var count = 6 ; count <= limitation ; count += 6) {
for(var d = -1; d <= 1; d += 2) {
max = Int(floor(sqrt(Double(count + d))))
for(flag = true, tmp = 0; flag && list[tmp] <= max; tmp++) {
if((count + d) % list[tmp] == 0) {
flag = false
}
}
if(flag) {
list.append(count + d)
}
}
}
print(list)
I've tested the above code on iswift.org/playground with limitation = 10,000, 100,000 and 1,000,000.

Matlab function calling basic

I'm new to Matlab and now learning the basic grammar.
I've written the file GetBin.m:
function res = GetBin(num_bin, bin, val)
if val >= bin(num_bin - 1)
res = num_bin;
else
for i = (num_bin - 1) : 1
if val < bin(i)
res = i;
end
end
end
and I call it with:
num_bin = 5;
bin = [48.4,96.8,145.2,193.6]; % bin stands for the intermediate borders, so there are 5 bins
fea_val = GetBin(num_bin,bin,fea(1,1)) % fea is a pre-defined 280x4096 matrix
It returns error:
Error in GetBin (line 2)
if val >= bin(num_bin - 1)
Output argument "res" (and maybe others) not assigned during call to
"/Users/mac/Documents/MATLAB/GetBin.m>GetBin".
Could anybody tell me what's wrong here? Thanks.
You need to ensure that every possible path through your code assigns a value to res.
In your case, it looks like that's not the case, because you have a loop:
for i = (num_bins-1) : 1
...
end
That loop will never iterate (so it will never assign a value to res). You need to explicitly specify that it's a decrementing loop:
for i = (num_bins-1) : -1 : 1
...
end
For more info, see the documentation on the colon operator.
for i = (num_bin - 1) : -1 : 1