Choosing the right database index type - mongodb

I have a very simple Mongo database for a personal nodejs project. It's basically just records of registered users.
My most important field is an alpha-numeric string (let's call it user_id and assume it can't be only numeric) of about 15 to 20 characters.
Now the most important operation is checking if the user exists at or all not. I do this by querying db.collection.find("user_id": "testuser-123")
if no record returns, I save the user along with some other not so important data like first name, last and signup date.
Now I obviously want to make user_id an index.
I read the Indexing Tutorials on the official MongoDB Manual.
First I tried setting a text index because I thought that would fit the alpha-numeric field. I also tried setting language:none. But it turned out that my query returned in ~12ms instead of 6ms without indexing.
Then I tried just setting an ordered index like {user_id: 1}, but I haven't seen any difference (is it only working for numeric values?).
Can anyone recommend me the best type of index for this case or quickest query to check if the user exists? Or maybe is MongoDB not the best match for this?

Some random thoughts first:
A text index is used to help full text search. Given your description this is not what is needed here, as, if I understand it well, you need to use an exact match of the whole field.
Without any index, MongoDB will use a linear search. Using big O notation, this is an O(n) operation. With an (ordered) index, the search is performed in O(log(n)). That means that an index will dramatically speed up queries when you will have many documents. But you will not necessary see any improvement if you have a small number of documents. In that case, O(n) can even be worst than O(log(n)). Some database management systems don't even bother using the index if the optimizer estimate that it will not provide enough benefits. I don't know if MongoDB does that, though.
Given your use case, I think the proper index is an unique index. This is an ordered index that would prevent insertion of two identical documents.
In your application, do not test before insert. In real application, this could lead to race condition when you have concurrent inserts. If you use an unique index, just try to insert -- and be prepared to gracefully handle an error caused by a duplicate key.

Related

MongoDB unique non-null fields without an index

I have a couple of fields in my documents that I want to make sure they are unique across a collection if they store non-null values, but I will never need to query for them - e.g. md5 hash of a file. As far as I've checked in the MongoDB documentation, for this situation it is suggested to use a unique and sparse index. My question is: is there any way to avoid creating an index, given the fact that I will never query on the md5 field of any document?
Since you will not be querying for these fields it is very difficult to say.
You could use query magic but then you might not have the values available to you, otherwise your only option is to enforce this client side which could create race conditions.
There's no way to guarantee uniqueness without creating indexes, as MongoDB doesn't provide any mechanism to enforce constraints.

mongodb indexing user-defined schemas

We are currently using MongoDB to allow tenants in a SaaS application to define entities that they can use in the application. We do not know know how each tenant is going to define the fields for the entities that they are creating upfront. Each entity will have a collection dynamically created for it in a separate database that belongs to the tenant.
For example, One tenant might define a Customer as First Name, Last Name, Email. Another tenant might define Shipment as Shipment Ref, Ship Date, Owner etc... Each tenant will have many entities/collections in their tenant database.
We have one field (ID) which we will always force the user to include in each entity/collection. We will index this field upfront when creating the collection.
However, how do we handle the case where we want to allow the tenant to sort/search/order/query large collections/entities quickly when/if the dataset becomes too large?
That is, since we do not know upfront what fields the user will be sorting/filtering/ordering by, what is the indexing strategy to use in this case with Mongo?
First of all Mongo requires you to have _id for each document and it indexes it automatically. You should take advantage of this and not create yet another ID field in case you require your clients to have ID field. I'm not sure if that's the case in your application.
What you are asking for can't have a perfect solution or even the most optimal one, but I can suggest couple options:
Create single field index for each field in the document. Let Mongo query optimizer decide which index to use depending on query. Disadvantages - takes lots of space on disk and in memory. Makes inserts slower. Mongo can use only 1 index in condition clause, so it will not be able to use compound index. You can easily extract schema with a tool like this. I wrote this little prototype that analyzes and prints Mongo schema.
Let your application learn what indexes to create. Get slow queries from Mongo profiler (in Mongo log), analyze common parts (automatically?) and create indexes on most commonly used fields. That's not so easy to implement and efficiency might change with time if your client changes queries or data. Application will be slow in the start until it learns about itself :).
Would just like to emphasize in choosing your design that the ID and not _id field you mention is actually some unique entity identifier then you are better of putting this in _id.
The reason here is that the performance trade-off for using another unique index over the required _id is a considerable overhead. Thinking about this, since _id is required it is the first thing that MongoDB looks for when determining which index to use. Otherwise consider a compound _id field containing your entity information and some other useful uniqueness.
As for the user defined fields, which is kind of the essence of mongo documents, for my money I would make it part of the API to set up indexes as required. Depending on the type of searching that is happening you'll probably want compound indexes and generated queries that make sense to these.
Simply indexing every field will probably have limited use as only one index is going to be picked for the find anyhow, and the query optimizer is going to try all of them. As has been mentioned, a long option could be to set indexes according to the usage patterns. But it could take some work to do.

Skipping the first term of a compound index by using hint()

Suppose I have a Mongo collection with fields a and b. I've populated this collection with {a:'a', b : index } where index increases iteratively from 0 to 1000.
I know this is very, very wrong, but can't explain (no pun intended) why:
collection.find({i:{$gt:500}}).explain() confirms that the index was not used (I can see that it scanned all 1,000 documents in the collection).
Somehow forcing Mongo to use the index seems to work though:
collection.find({i:{$gt:500}}).hint({a:1,i:1}).explain()
Edit
The Mongo documentation is very clear that it will only use compound indexes if one of your query terms is the matches the first term of the compound index. In this case, using hint, it appears that Mongo used the compound index {a:1,i:1} even though the query terms do NOT include a. Is this true?
The interesting part about the way MongoDB performs queries is that it actually may run multiple queries in parallel to determine what is the best plan. It may have chosen to not use the index due to other experimenting you've done from the shell, or even when you added the data and whether it was in memory, etc/ (or a few other factors). Looking at the performance numbers, it's not reporting that using the index was actually any faster than not (although you shouldn't take much stock in those numbers generally). In this case, the data set is really small.
But, more importantly, according to the MongoDB docs, the output from the hinted run also suggests that the query wasn't covered entirely by the index (indexOnly=false).
That's because your index is a:1, i:1, yet the query is for i. Compound indexes only support searches based on any prefix of the indexed fields (meaning they must be in the order they were specified).
http://docs.mongodb.org/manual/core/read-operations/#query-optimization
FYI: Use the verbose option to see a report of all plans that were considered for the find().

strategy for creating MongoDB short ids that scale

I want to have a friendlier facing ids (ie Youtube style: /posts/cxB6Ey6) than MongoDB's ObjectID.
I read that for scalability its best to leave _id as an ObjectID so I thought about two solutions:
1) add an indexed postid field to each document
2) create a mapping collection between _id and the postid
in both cases use something like https://github.com/dylang/shortid to generate the short id, and while generating make sure that the id is unique by querying the database.
(can this query-generate-insert be an atomic operation?)
will those solutions have a noticeable impact on performance ?
what's the best strategy for doing this ?
The normal method of doing this is to base64 encode a unique id but:
add an indexed postid field to each document
You definitely want to go for this method. Out of the two I would say this method is easily the most scalable and performant, for one it would only need one round trip to get a short URLs details where as the second option would take 2. Another consideration is the shortage of index overhead of maintaining an extra collection, this is a bit of a no-brainer.
I would not replace the _id field within the document either since the default ObjectId could still be useful in the foreseeable future.
So this limits it down to a separate field and index (unique key) for the short code of a URL.
The next thing is that you don't want an ID which forces you to query the database for uniqueness prior to every insert. This is where the ObjectId shines. The ObjectId is good at being made within the client application while being unique in the database without having to specifically query those assumptions.
Unique ids that do not require querying the database first are normally time based. In PHP ( http://php.net/manual/en/function.uniqid.php ) and in the MongoDB Drivers ( http://docs.mongodb.org/manual/core/object-id/ ) and even the plug-in you linked on github ( https://github.com/dylang/shortid/blob/master/lib/shortid.js#L50 ) they all use time as a basis for being unique.
Considering the plug-in you linked does not query the database to check its own IDs uniqueness I would say that this plug-in probably is quite performant and if you use it with the first solution you stated you should get a good benchmark out of it.
If you want to replace build-in ObjectID with custom user-friendly short id's then do it. You can either use build-in _id field or add a new unique-indexed field id for your custom ids. The benefit of using build-in ObjectID's is than they won't duplicate even if your database is extremely large. So, by replacing them with short id's you take the risk of id duplication.
Now about the performance. I think that the best solution is not to query DB for id's, because with properly adjusted ids length the probability of duplication is extremely small. So, the best way to handle ids duplication in this model is to check Mongo responses. If it responded with "duplicate key error" then you shall generate a new one.
And now about scaling. To scale your custom ids you can just add a few more symbols to it. "Duplicate key error" shall be a trigger for making that change. Normally there shall be no such errors. So, if they started to appear then its time to scale.
I don't think that generating ObjectId for _id field affect directly scalability or performance. Whereby this can be happen?
Main difference is that ObjectIds are created by MongoDB and you don't burden yourself with responsibility for this. Otherwise you must by yourself to determine optimal size of id and to ensure unique value for each _id field of documents stored in collection. It's required because _id used as primary key. This can be justified if you have not very big collection and custom value of identifier is need for you.
But you have such additional benefits with _id field that stores ObjectId values as opportunity to create object id's from time and use this fact to your advantage in queries. Also you can get timestamp of ObjectId’s creation with getTimestamp() method. And sorting on _id in this case is equivalent to sorting by creation time.
But if you're going to use ObjectId in URLs or HTML then for security concerns you can encrypt it. To prevent leakage of information and access to object's creation time. It may be security risk.
About your solutions:
1) I suppose this's very convenient and flexible solution. In this case you can specify any value in postId which doesn't depend directly on _id.
But little disadvantage of this solution is that you have to have extra field and to create extra index. While _id is automatically indexed.
2) I don't think this's good solution from the point of view of performance and philosophy of noSQL approach.

How complete should MongoDB indexes be?

For example, I have documents with only three fields: user, date, status. Since I select by user and sort by date, I have those two fields as an index. That is the proper thing to do. However, since each date only has one status, I am essentially indexing everything. Is it okay to not index all fields in a query? Where do you draw the line?
What makes this question more difficult is the complete opposite approach to indexes between read-heavy and write-heavy collections. If yours is somewhere in between, how do you determine the proper approach when it comes to indexes?
Is it okay to not index all fields in a query?
Yes, but you'll want to avoid this for frequently used queries. Anything not indexed will imply a "table scan". This means accessing each possible document individually, which will be slow.
Where do you draw the line?
Also note, that if you sort by an un-indexed field, MongoDB will "yell at you" if you're trying to sort too much data. So you have to have some awareness of how much data is "outside of" the index.
If yours is somewhere in between, how do you determine the proper approach when it comes to indexes?
Monitoring, instrumenting, experimenting and experience.
There is no hard and fast rule here, it's all going to be about trade-offs. CPU vs. RAM vs. Disk IO vs. Responsiveness, etc.
The perfect situation is to store everything in a single index. By everything I mean all fields you query on, you sort by and you retrieve. This will ensure that you'll get maximum performance (if index fits in ram)
This situation is not always possible, so you'll have to make choices.
Here are 3 tips to reduce at maximum the index size:
Does each of your query have a lot of results or only a few ? => A few : you do not have to index all the fields you retrieve (only the query and sort fields because few results mean few disk access).
Does your query results are often the same (i.e your working set is small) ? => don't index the field you retrieve because results are cached by mongodb.
Do you have a query field more selective than another ? => index the more selective field only.