MATLAB - Only plot a spherical section of data set which is cubic - matlab

I have a physics model that simulates a few things in a radius of 5000 km around an object in spherical coordinates. I found no way to interpolate spherical coordinates in MATLAB so I changed them to Cartesian with sph2cart function. Then I used scatteredinterpolant function with a 10000 by 10000 by 10000 km meshgrid to interpolate the data. I want to plot this data but only the sphere of a radius 5000 km. Is there a nice way to plot a certain specified volume of the data?

If you just want to delete part of your data "spherically" you can do
being x,y,z your geometric data and v the values:
level=5000; %km (or whatever value it is in your data)
V(sqrt(X.^2+Y.^+Z.^2)>level)=0;
%or depending in the plotting functions.
V(sqrt(X.^2+Y.^+Z.^2)>level)=NaN;
% plot things

Related

Gaussian fit on a sphere

I have an array of spatial data [lat,lon,intensity] on the Earth surface. Plotting the data with surf(lon,lat,intensity) shows the surface is a Gaussian shaped. I want to fit a 2D Gaussian function to the data to get the center and spread (mean and variance) of the data.
It's easy to fit a bivariate Gaussian function for data as [x,y,intensity]. But my data is sampled on the sphere. Latitude and longitude cannot be treated as for x and y in cartesian coordinates.

How can I create a slice of a surface plot to create a line? (Matlab)

Given some function z = f(x,y), I'm interested in creating a (1D) line plot along an arbitrary cutting plane in x,y,z. How do I do this in Matlab? Slice, for example, provides a higher dimensional version (colormap of density data) but this is not what I'm looking for.
E.g.:
z = peaks(50);
surf(z);
%->plot z along some defined plane in x,y,z...
This has been asked before, e.g. here, but this is the answer given is for reducing 3D data to 2D data, and there is no obvious answer on googling. Thanks.
If the normal vector of the plane you want to slice your surface will always lay in the xy plane, then you can interpolate the data over your surface along the x,y coordinates that are in the slicing line, for example, let the plane be defined as going from the point (0,15) to the point (50,35)
% Create Data
z=peaks(50);
% Create x,y coordinates of the data
[x,y]=meshgrid(1:50);
% Plot Data and the slicing plane
surf(z);
hold on
patch([0,0,50,50],[15,15,35,35],[10,-10,-10,10],'w','FaceAlpha',0.7);
% Plot an arbitrary origin axis for the slicing plane, this will be relevant later
plot3([0,0],[15,15],[-10,10],'r','linewidth',3);
Since it is a plane, is relatively easy to obtain the x,y coordinates alogn the slicing plane with linspace, I'll get 100 points, and then interpolate those 100 points into the original data.
% Create x and y over the slicing plane
xq=linspace(0,50,100);
yq=linspace(15,35,100);
% Interpolate over the surface
zq=interp2(x,y,z,xq,yq);
Now that we have the values of z, we need against what to plot them against, that's where you need to define an arbitrary origin axis for your splicing plane, I defined mine at (0,15) for convenience sake, then calculate the distance of every x,y pair to this axis, and then we can plot the obtained z against this distance.
dq=sqrt((xq-0).^2 + (yq-15).^2);
plot(dq,zq)
axis([min(dq),max(dq),-10,10]) % to mantain a good perspective

plot a set of 3D data in different angles in MATLAB

I have a formula that depends on theta and phi (spherical coordinates 0<=theta<=2*pi and 0<=phi<=pi). By inserting each engle, I obtained a quantity. Now I have a set of data for different angles and I need to plot the surface. My data is a 180*360 matrix, so I am not sure if I can use SURF or MESH or PLOT3. The figure should be a surface that include all data and the axes should be in terms of the quantity, not the quantity versus the angles. How can I plot such a surface?
I see no reason why you cannot use mesh or surf to plot such data. Another option I tend to use is that of density plots. You basically display the dependent variable (quantity) as an image and include the independent variables (angles) along the axis, much like you would with the aforementioned 3D plotting functions. This can be done with imagesc.
Typically you would want your axes to be the dependent variables. Could you elaborate more on this point?
If I understand you correctly you have calculated a function f(theta,phi) and now you want to plot the surface containing all the points with the polar coordinated (r,theta,phi) where r=f(theta,phi).
If this is what you want to do, the 2D version of such a plot is included in MATLAB under the name polar. Unfortunately, as you pointed out, polar3 on MatlabCentral is not the generalization you are looking for.
I have been able to plot a sphere with the following code, using constant r=1. You can give it a try with your function:
phi1=0:1/(3*pi):pi; %# this would be your 180 points
theta1=-pi:1/(3*pi):pi; % your 360 points
r=ones(numel(theta1),numel(phi1));
[phi,theta]=meshgrid(phi1,theta1);
x=r.*sin(theta).*cos(phi);
y=r.*sin(theta).*sin(phi);
z=r.*cos(theta);
tri=delaunay(x(:),y(:),z(:));
trisurf(tri,x,y,z);
From my tests it seems that delaunay also includes a lot of triangles which go through the volume of my sphere, so it seems this is not optimal. So maybe you can have a look at fill3 and construct the triangles it draws itself: as a first approximation, you could have the points [x(n,m) x(n+1,m) x(n,m+1)] combined into one triangle, and [x(n+1,m) x(n+1,m+1) x(n+1,m+1)] into another...?

Plotting a surface from a set of interior 3D scatter points in MATLAB

I have a large (~60,000) set of triplet data points representing x,y, and z coordinates, which are scattered throughout a Cartesian volume.
I'm looking for a way to use Matlab to visualize the non-convex shape/volume described by the maximum extent of the points.
I can of course visualize the individual points using scatter3, but given the large number of points the details of the shape are obscured by the noise of the dots.
As an analogy, imagine that you filled a hour glass with spheres of random sizes such as BBs, ping pong balls, and kix and then were given the coordinates of the center of each of each object. How would you take those coordinates and visualize the shape of the hour glass containing them?
My example uses different sized objects because the spacing between data points is non-uniform and effectively random; it uses an hourglass because the shape is non-convex.
If your surface enclosing the points can be described as a convex polyhedron (i.e. like the surface of a cube or a dodecahedron, without concave pits or jagged pointy parts), then I would start by creating a 3-D Delaunay triangulation of the points. This will fill the volume around the points with a series of tetrahedral elements with the points as their vertices, and you can then find the set of triangular faces that form the outer shell of the volume using the convexHull method of the DelaunayTri class.
Here's an example that generates 200 random points uniformly distributed within the unit cube, creates a tetrahedral mesh for these points, then finds the 3-D convex hull for the volume:
interiorPoints = rand(200,3); %# Generate 200 3-D points
DT = DelaunayTri(interiorPoints); %# Create the tetrahedral mesh
hullFacets = convexHull(DT); %# Find the facets of the convex hull
%# Plot the scattered points:
subplot(2,2,1);
scatter3(interiorPoints(:,1),interiorPoints(:,2),interiorPoints(:,3),'.');
axis equal;
title('Interior points');
%# Plot the tetrahedral mesh:
subplot(2,2,2);
tetramesh(DT);
axis equal;
title('Tetrahedral mesh');
%# Plot the 3-D convex hull:
subplot(2,2,3);
trisurf(hullFacets,DT.X(:,1),DT.X(:,2),DT.X(:,3),'FaceColor','c')
axis equal;
title('Convex hull');
You could treat your data as a sample from a three-dimensional probability density, and estimate that density on a grid, e.g. via a 3d histogram, or better a 3d kernel density estimator. Then apply a threshold and extract the surface using isosurface.
Unfortunately, hist3 included in the Statistics Toolbox is (despite its name) just a 2d histogram, and ksdensity works only with 1d data, so you would have to implement 3d versions yourself.

turn scatter plot into area plot

I have a 2D scatter plot in MATLAB. Is it possible to interpolate the scatter plot to create an area plot?
If you're simply trying to draw one large filled polygon around your entire set of scattered points, you can use the function CONVHULL to find the convex hull containing your points and the function PATCH to display the convex hull:
x = rand(1,20); %# 20 random x values
y = rand(1,20); %# 20 random y values
hullPoints = convhull(x,y); %# Find the points defining the convex hull
patch(x(hullPoints),y(hullPoints),'r'); %# Plot the convex hull in red
hold on; %# Add to the existing plot
scatter(x,y); %# Plot your scattered points (for comparison)
And here's the resulting figure:
Scatter is generally used to represent data where you can't use a line graph, i.e., where each x might have many different y values, so you can't convert directly to an area graph--it would be meaningless. If your data actually is representable as a line graph, then pass it to area directly.
So I'm not quite sure what you want, but here are some possibilities:
You could create a Voronoi diagram based on your points. This will show a region near your points showing which points are closer to a specific point: voronoi(x,y), or see the help.
You could bucket or quantize your data somehow, making it fit into a grid, and then plot the grid. This could also be considered a histogram, so read up on that.
You could just use larger scatter markers (scatter(x,y,scale) where scale is the same dimensions as x and y).