A histogram using a DICOM file? - matlab

I'm trying to make a histogram out of a DICOM file, but for the life of me I still can't figure out why I'm getting a negative value for an index. I've transposed the image but the index is still negative and I'm not sure what I am doing wrong. The values should be all correct for the file size, header, depth, and width, and the program I'm trying to process this in is MATLAB.
clear
fpointer=fopen('PIG_CT','r');
fseek(fpointer,980,'bof');
img=zeros(512,512);
img(:)=fread(fpointer,(512*512),'short');
img=transpose(img);
depth = 16;
width = depth/64;
fmax = max(max(img));
fmin = min(min(img));
hist64 = zeros(64,1);
for i = 1:512
for j = 1:512
rho = img(i,j);
b64 = floor(rho/width+1)+1;
hist64(b64,1)= hist64(b64,1)+1;
end
end
bar(hist64)
ERROR: Attempted to access hist64(-4094,1); index must be a positive integer or logical.
The equation that I am also using with this is:
Bin Width = (Image Depth)/(# of Bins)

I'm not familiar with MATLAB, but it looks like you're just reading the file from a specific seek point. Using a DICOM toolkit would ensure you get the actual pixel data attribute entry hand handle any encoding you're likely to run into.
Also, check if your DICOM reader is applying the rescale slope and intercept. Typically this will convert a CT image to Hounsfield units, which have negative values (though -4094 seems a bit much given air is -1000).

Related

Matlab function reshape doesnt´t calculate the last dimension while trying to create a 3D image from .raw binary image file

I created binarized images by using the Otsu methode in Matlab and cut out parts of the resulting image using a function. Now i want to take a look at these images with the VolumeViewer command. I know the x,y and z dimensions of the resulting imgages. I currently run this code doing it(excluding the volumeViewerwhich happens after the loop):
files= {'C3\C3_000mal_550_539_527.raw';...
};
for i=1:numel(files)
Image = fopen(files{i},'r');
ImageData{i} = fread(Image,Inf,'uint16=>uint16');
ImageData{i} = reshape(ImageData{i},550,539,[]);
fclose(openedCrystalImage);
end
Using this code runs into the following error using reshape:
Error using reshape
Product of known dimensions, 296450, not divisible into total number of elements, 78114575.
I did the maths and 550*539=296450 and 296450 * 527=156229150: If we divide the last number by the number of elements it equals 2 and thus is divisible into the total number of elements. In my opinion the reshape function is not able to find the size of the last dimension or defines it as 1.
Defining the size of z also results in an error suggesting using the brackets [], so the function can find it.
Error using reshape
Number of elements must not change. Use [] as one of the size inputs to automatically calculate the appropriate size
for that dimension.
Now to the weird part. This code works for another set of images, with diffrent sizes of the x,y and z ranges. So don´t know where the issue lies to be frank. So i would really appreciate and Answer to my question
I figured it out. The error lies here:
ImageData{i} = fread(Image,Inf,'uint16=>uint16');
Apparently by saving them as .raw before it converts the image to an 8 bit file rather than 16 bits it had before. Therefore, my dimension is double the size of the number of elements. With this alteration it works:
ImageData{i} = fread(Image,Inf,'uint8=>uint8');
The reason i was able to look at the other pictures was that the z range was divisble by 2.
So the reshape function was not the problem but size of the integer data while creating the array for the variable ImageData.
P.S. I just started out programming so the accuracy in the answer should be taken with a grain of salt

comparing generated data to measured data

we have measured data that we managed to determine the distribution type that it follows (Gamma) and its parameters (A,B)
And we generated n samples (10000) from the same distribution with the same parameters and in the same range (between 18.5 and 59) using for loop
for i=1:1:10000
tot=makedist('Gamma','A',11.8919,'B',2.9927);
tot= truncate(tot,18.5,59);
W(i,:) =random(tot,1,1);
end
Then we tried to fit the generated data using:
h1=histfit(W);
After this we tried to plot the Gamma curve to compare the two curves on the same figure uing:
hold on
h2=histfit(W,[],'Gamma');
h2(1).Visible='off';
The problem s the two curves are shifted as in the following figure "Figure 1 is the generated data from the previous code and Figure 2 is without truncating the generated data"
enter image description here
Any one knows why??
Thanks in advance
By default histfit fits a normal probability density function (PDF) on the histogram. I'm not sure what you were actually trying to do, but what you did is:
% fit a normal PDF
h1=histfit(W); % this is equal to h1 = histfit(W,[],'normal');
% fit a gamma PDF
h2=histfit(W,[],'Gamma');
Obviously that will result in different fits because a normal PDF != a gamma PDF. The only thing you see is that for the gamma PDF fits the curve better because you sampled the data from that distribution.
If you want to check whether the data follows a certain distribution you can also use a KS-test. In your case
% check if the data follows the distribution speccified in tot
[h p] = kstest(W,'CDF',tot)
If the data follows a gamma dist. then h = 0 and p > 0.05, else h = 1 and p < 0.05.
Now some general comments on your code:
Please look up preallocation of memory, it will speed up loops greatly. E.g.
W = zeros(10000,1);
for i=1:1:10000
tot=makedist('Gamma','A',11.8919,'B',2.9927);
tot= truncate(tot,18.5,59);
W(i,:) =random(tot,1,1);
end
Also,
tot=makedist('Gamma','A',11.8919,'B',2.9927);
tot= truncate(tot,18.5,59);
is not depending in the loop index and can therefore be moved in front of the loop to speed things up further. It is also good practice to avoid using i as loop variable.
But you can actually skip the whole loop because random() allows to return multiple samples at once:
tot=makedist('Gamma','A',11.8919,'B',2.9927);
tot= truncate(tot,18.5,59);
W =random(tot,10000,1);

Interactive curve fitting with MATLAB using custom GUI?

I find examples the best way to demonstrate my question. I generate some data, add some random noise, and fit it to get back my chosen "generator" value...
x = linspace(0.01,1,50);
value = 3.82;
y = exp(-value.*x);
y = awgn(y,30);
options = optimset('MaxFunEvals',1000,'MaxIter',1000,'TolFun',1e-10,'Display','off');
model = #(p,x) exp(-p(1).*x);
startingVals = [5];
lb = [1];
ub = [10];
[fittedValue] = lsqcurvefit(model,startingVals,x,y,lb,ub,options)
fittedGraph = exp(-fittedValue.*x);
plot(x,y,'o');
hold on
plot(x,fittedGraph,'r-');
In this new example, I have generated the same data but this time added much more noise to the first 15 points. Because it is random sometimes it works out okay, but after a few runs I get a good example that illustrates my problem. Same code, except for these lines added under value = 3.82
y = exp(-value.*x);
y(1:15) = awgn(y(1:15),5);
y(15:end) = awgn(y(15:end),30);
As you can see, it has clearly not given a good fit to where the data seems reliable, because it is fitting from points 1-50. What I want to do is say, okay MATLAB, I can see we have some noisy data but it seems decent over a range, only fit your exponential from points 15 to the end. I could go back to my code and update it to do this, but I will be batch fitting graphs like this where each one will have different ranges of 'good' data.
So what I am after is a GUI callback mechanisms that allows me to click on two circles from the data and have them change color or something, which indicates the lsqcurvefit will only fit over that range. Internally all it has to change is inside the lsqcurvefit call e.g.
x(16:end),y(16:end)
But the range should update depending on the starting and ending circles I have clicked.
I hope my question is clear. Thanks.
You could use ginput to select the two points for your min and max in the plot.
[x,y]=ginput(2);
%this returns you the x and y coordinates of two points clicked after each other
%the min point is assumed to be clicked first
min=[x(1) y(1)];
max=[x(2) y(2)];
then you could fit your curve with the coordinates for min and max I guess.
You could also switch between a rightclick for the min and a leftclick for the max etc.
Hope this helps you.

column to block using sliding window in matlab

using im2col sliding window in matlab i have converted the input image block into column and again by using col2im i do the inverse process but the output is not same as the input image. How can i recover the input image? can anyone please help me.
Here is the code
in=imread('tire.tif');
[mm nn]=size(in);
m=8;n=8;
figure,imshow(in);
i1=im2col(in,[8 8],'sliding');
i2 = reshape( sum(i1),mm-m+1,nn-n+1);
out=col2im(i2,[m n],[mm nn],'sliding');
figure,imshow(out,[]);
thanks in advance...
You didn't specify exactly what the problem is, but I see a few potential sources:
You shouldn't expect the output to be exactly the same as the input, since you're replacing each pixel value with the sum of pixels in an 8-by-8 neighborhood. Also, you will get a shrinkage of the resulting image by 7 pixels in each direction (i.e. [m-1 n-1]) since the 'sliding' option of IM2COL does not pad the array with zeroes to create neighborhoods for pixels near the edges.
These two lines are redundant:
i2 = reshape( sum(i1),mm-m+1,nn-n+1);
out=col2im(i2,[m n],[mm nn],'sliding');
You only need one or the other, not both:
%# Use this:
out = reshape(sum(i1),mm-m+1,nn-n+1);
%# OR this:
out = col2im(sum(i1),[m n],[mm nn],'sliding');
Image data in MATLAB is typically of type 'uint8', meaning each pixel is represented as an unsigned 8-bit integer spanning the range 0 to 255. Assuming this is what in is, when you perform your sum operation you will implicitly end up converting it to type 'double' (since an unsigned 8-bit integer will likely not be big enough to hold the sum totals). When image pixel values are represented with a double type, the pixel values are expected to span the range 0 to 1, so you will want to scale your resulting image by its maximum value to get it to display properly:
out = out./max(out(:));
Lastly, check what kind of input image you are using. For your code, you are essentially assuming in is 2-D (i.e. a grayscale intensity image). If it is a truecolor (i.e. RGB) image, the third dimension is going to cause you some trouble, and you will have to either process each color plane separately and recombine them or convert the RGB image to grayscale. If it is an indexed image (with an associated color map), you will not be able to do the sort of processing you describe above without first converting it to a grayscale representation.
Why are you expecting the output to be the same?
i2 is the result of performing a SUM around a pixel neighborhood (essentially a low-pass filter), which is the final blurry image that you see. i.e you are NOT doing an inverse process with the COL2IM call.
i1 obtained from 'sliding' option has the information that you would get from 'distinct' option as well, which you need to filter out. Now, this may not be the best way to code it up but it works. Assume that mm is a multiple of m and nn is a multiple of n. If this is not the case, then you'll have to zero-pad accordingly to make this the case.
in=imread('tire.tif');
[mm nn]=size(in);
m=8;n=8;
i1 = im2col(in,[m,n],'sliding');
inSel = [];
for k=0:mm/m-1
inSel = [inSel 1:n:nn+(nn-n+1)*n*k];
end
out = col2im(i1(:,inSel),[m,n],[mm,nn],'distinct');

Problem with Array type "DAMPAR" in MATLAB deconvolucy.m

Below is part of the code that i tried to edit from, MATLAB's deconvolucy.
it appears to have problem with DAMPAR where the class type does not match.
can anyone help or does anyone know a better way to call in an image that I (as in deconvolucy.m) would tolerate?
[perhaps i should convert the image into array before use? how do i do so?]
// -- code -- //
I = imread('C:\Users\Lem\Desktop\III\TIFF\69_M.000.tif', 'tif');
class(I)
PSF = fspecial('gaussian',7,10);
V = .0001;
BlurredNoisy = imnoise(imfilter(I,PSF),'gaussian',0,V);
WT = zeros(size(I));
WT(5:end-4,5:end-4) = 1;
J1 = deconvlucy(BlurredNoisy,PSF);
J2 = deconvlucy(BlurredNoisy,PSF,20,sqrt(V));
J3 = deconvlucy(BlurredNoisy,PSF,20,sqrt(V),WT);
//.........//
??? Error using ==> deconvlucy>parse_inputs at 316
In function deconvlucy, DAMPAR has to be of the same class as the input image.
Error in ==> deconvlucy at 102
[J,PSF,NUMIT,DAMPAR,READOUT,WEIGHT,SUBSMPL,sizeI,classI,numNSdim]=...
You have read in an image using imread. So it is probably coming in as uint8? The help for imread says the result will be integer of some order for a tiff image. What class was I when it was returned?
You then filtered the image. It appears that imfilter will return an integer image for an integer input image.
Next, you add noise, using imnoise. From the online help for imnoise, it internally converts the image to a [0,1] (double) number, adds the Gaussian noise, then converts back to integer output. So your blurred image should still be integer, probably uint8 elements.
The help for fspecial says it will return a double precision output for PSF.
You called deconvolucy with only two arguments, so it is using the default value for DAMPAR. (I'll argue that this should not fail here. The author of deconvolucy appears not to have supplied a default value that was consistent in type with the inputs.)
Not knowing enough about the IPT or deconvolucy, I might first suggest re-running this code, using two different calls.
J1 = deconvlucy(BlurredNoisy,PSF,[],0);
J1 = deconvlucy(BlurredNoisy,PSF,[],uint8(0));
If one of these calls did not fix the problem, it suggests that deconvolucy expects a double input for the image, BlurredNoisy. The online help for deconvolucy was not specific here. It says only that I may be an N dimensional array or a cell array. Further on in the help, it calls the result a numeric array. So I believe that the image for deconvolucy is expected to be a floating point image. (By my standards, this is a flaw in the help.)
I would then probably try scaling your image to [0,1] as a double. It is just a guess however. So something like:
BlurredNoisy = double(BlurredNoisy)/255;
This assumes your image was uint8 in class originally.