Scala Style Guide: Why Mimic a function? - scala

I’m reading the Scala style guide: http://docs.scala-lang.org/style/naming-conventions.html
and they mention this:
Objects
Objects follow the class naming convention (camelCase with a
capital first letter) except when attempting to mimic a package or a
function. These situations don’t happen often, but can be expected in
general development.:
object ast {
sealed trait Expr
case class Plus(e1: Expr, e2: Expr) extends Expr
...
}
object inc {
def apply(x: Int): Int = x + 1
}
I can think of maybe a few thin use cases for the "object ast". But I can't think of why anyone would want to "mimic a function" in the manner of "object inc". It feels a bit unconventional, and likely to confuse other developers.
Are there any example cases where the core Scala libraries do this? Or when would it be good practice to define a function like this?

As mentioned in the comments, one good example is shapeless.Poly functions.
A Poly function is a polymorphic version of a function. It needs to be represented as an object for three main reasons:
it contains multiple functions (to handle multiple cases, since they're polymorphic)
an object's companion object is the object itself. This allows for defining the various cases as implicit methods inside the object and have them picked up by the compiler
objects provide a stable identifier, so the compiler won't complain when passing the instance of the function to any of shapeless's methods
Technicalities aside, they're conceptually functions, hence the same naming style for regular functions is used.

Related

When should I use an implicit class?

For me, I would use an implicit class under the following scenarios:
don't have access to the underlying type to be able to add the method I want.
the method I want doesn't make sense in a "global" sense.
i am splitting the functionality into another library of "extensions"
actually converting to a new type adds semantic/readability value (the new type actually means something)
However, I am fairly new to Scala (<6 months) and I'm noticing the developers around me are using implicit classes when it breaks the scenarios above. When I asked why, the answer was "because that's what I've always done".
So my question is, is there an official recommendation for when one should use an implicit class over a normal function added to the class definition? (I couldn't find anything here: https://docs.scala-lang.org/overviews/core/implicit-classes.html)
As per the SIP,
Motivation for the implicit class was that the popular extension method pattern, sometimes called the Pimp My Library pattern was used in Scala to extend pre-existing classes with new methods, fields, and interfaces.
There was also another common ‘extension’ use case known as type traits or type classes (see scala.math.Numeric). Type classes offered an alternative to pure inheritance hierarchies that was very similar to the extension method pattern.
The main drawback to both of these techniques was that they suffered the creation of an extra object at every invocation to gain the convenient syntax. This made these useful patterns unsuitable for use in performance-critical code. In these situations it was common to remove use of the pattern and resort to using an object with static helper methods.
And implicit class syntax was thus added to solve these issues.
The rock. They allow to make your own DSLs. Take a look to the Spray code, one of our classic and beloved projects:
trait TransformerPipelineSupport {
...
implicit class WithTransformation[A](value: A) {
def ~>[B](f: A ⇒ B): B = f(value)
}
...
}
The ~> allows to compose Spray directives... There are many more examples

Is is reasonable, and is there a benefit to a Scala Symbol class that extends AnyVal?

It seems that one issue with scala.Symbol is it two objects, the Symbol and the String it is based on.
Why can this extra object not be eliminated by defining Sym something like:
class Sym private(val name:String) extends AnyVal {
override def toString = "'" + name
}
object Sym {
def apply(name:String) = new Sym(name.intern)
}
Admittedly the performance implications of object allocation are likely tiny, but comments with those with a deeper understanding of Scala would be illuminating. In particular, does the above provide efficient maps via equality by reference?
Another advantage of the simple 'Sym' above is in a map centric application where there are lots of string keys, but where the strings are naming many entirely different kinds of things, type safe Sym classes can be defined so that Maps will definitively show to the programmer, the compiler and refactoring tools what the key really is.
(Neither Symbol nor Sym can be extened, the former apparently by choice, and the latter because it extends AnyVal, but Sym is trivial enough to just duplicate with an appropriate name)
It is not possible to do Symbol as an AnyVal. The main benefit of Symbols over simple Strings is that Symbols are guaranteed to be interned, so you can test equality of symbols using a simple reference comparison instead of an expensive string comparison.
See the source code of Symbol. Equals is overridden and redefined to do a reference comparison using the eq method.
But unfortunately an AnyVal does not allow you to redefine equality. From the SIP-15 for user-defined value classes:
C may not define concrete equals or hashCode methods.
So while it would be extremely useful to have a way to redefine equality without incurring runtime overhead, it is unfortunately not possible.
Edit: never use string.intern in any program where performance is important. The performance of string.intern is horrible compared to even a trivial intern table. See this SO question and answer. See the source code of Symbol above for a simple intern table.
Unfortunately, object allocation for an AnyVal is forced whenever it is put into a collection, like the Map in your example. This is because the value class has to be cast to the type parameter of the collection, and casting to a new type always forces allocation. This eliminates almost any advantage of declaring Sym as a value class. See Allocation Details in the Scala documentation page for value classes.
For AnyVal the class is actually the String. The magically added methods and type-safety are just compiler tricks. It's the String that gets transfered all around.
For pattern matching (Symbol's purpose as I suppose) Scala needs the class of an object. Thus — Symbol extends AnyRef.

Why are value classes restricted to AnyVal?

As far as I understand value classes in Scala are just there to wrap primitive types like Int or Boolean into another type without introducing additional memory usage. So they are basically used as a lightweight alternative to ordinary classes.
That reminds me of Haskell's newtype notation which is also used to wrap existing types in new ones, thus introducing a new interface to some data without consuming additional space (to see the similarity of both languages consider for instance the restriction to one "constructor" with one field both in Haskell and in Scala).
What I am wondering is why the concept of introducing new types that get inlined by the compiler is not generalized to Haskell's approach of having zero-overhead type wrappers for any kind of type. Why did the Scala guys stick to primitive types (aka AnyVal) here?
Or is there already a way in Scala to also define such wrappers for Scala.AnyRef types?
They're not limited to AnyVal.
implicit class RichOptionPair[A,B](val o: Option[(A,B)]) extends AnyVal {
def ofold[C](f: (A,B) => C) = o map { case (a,b) => f(a,b) }
}
scala> Some("fish",5).ofold(_ * _)
res0: Option[String] = Some(fishfishfishfishfish)
There are various limitations on value classes that make them act like lightweight wrappers, but only being able to wrap primitives is not one of them.
The reasoning is documented as Scala Improvement Process (SIP)-15. As Alexey Romanov pointed out in his comment, the idea was to look for an expression using existing keywords that would allow the compiler to determine this situation.
In order for the compiler to perform the inlining, several constraints apply, such as the wrapping class being "ephemeral" (no field or object members, constructor body etc.). Your suggestion of automatically generating inlining classes has at least two problems:
The compiler would need to go through the whole list of constraints for each class. And because the status as value class is implicit, it may flip by adding members to the class at a later point, breaking binary compatibility
More constraints are added by the compiler, e.g. the value class becomes final prohibiting inheritance. So you would have to add these constraints to any class who want to be inlineable that way, and then you gain nothing but extra verbosity.
One could think of other hypothetical constructs, e.g. val class Meter(underlying: Double) { ... }, but the advantage of extends AnyVal IMO is that no syntactic extensions are needed. Also all primitive types are extending AnyVal, so there is a nice analogy (no reference, no inheritance, effective representation etc.)

which GOF Design pattern(s) has entirely different implementation (java vs Scala)

Recently I read following SO question :
Is there any use cases for employing the Visitor Pattern in Scala?
Should I use Pattern Matching in Scala every time I would have used
the Visitor Pattern in Java?
The link to the question with title:
Visitor Pattern in Scala. The accepted answer begins with
Yes, you should probably start off with pattern matching instead of
the visitor pattern. See this
http://www.artima.com/scalazine/articles/pattern_matching.html
My question (inspired by above mentioned question) is which GOF Design pattern(s) has entirely different implementation in Scala? Where should I be careful and not follow java based programming model of Design Patterns (Gang of Four), if I am programming in Scala?
Creational patterns
Abstract Factory
Builder
Factory Method
Prototype
Singleton : Directly create an Object (scala)
Structural patterns
Adapter
Bridge
Composite
Decorator
Facade
Flyweight
Proxy
Behavioral patterns
Chain of responsibility
Command
Interpreter
Iterator
Mediator
Memento
Observer
State
Strategy
Template method
Visitor : Patten Matching (scala)
For almost all of these, there are Scala alternatives that cover some but not all of the use cases for these patterns. All of this is IMO, of course, but:
Creational Patterns
Builder
Scala can do this more elegantly with generic types than can Java, but the general idea is the same. In Scala, the pattern is most simply implemented as follows:
trait Status
trait Done extends Status
trait Need extends Status
case class Built(a: Int, b: String) {}
class Builder[A <: Status, B <: Status] private () {
private var built = Built(0,"")
def setA(a0: Int) = { built = built.copy(a = a0); this.asInstanceOf[Builder[Done,B]] }
def setB(b0: String) = { built = built.copy(b = b0); this.asInstanceOf[Builder[A,Done]] }
def result(implicit ev: Builder[A,B] <:< Builder[Done,Done]) = built
}
object Builder {
def apply() = new Builder[Need, Need]
}
(If you try this in the REPL, make sure that the class and object Builder are defined in the same block, i.e. use :paste.) The combination of checking types with <:<, generic type arguments, and the copy method of case classes make a very powerful combination.
Factory Method (and Abstract Factory Method)
Factory methods' main use is to keep your types straight; otherwise you may as well use constructors. With Scala's powerful type system, you don't need help keeping your types straight, so you may as well use the constructor or an apply method in the companion object to your class and create things that way. In the companion-object case in particular, it is no harder to keep that interface consistent than it is to keep the interface in the factory object consistent. Thus, most of the motivation for factory objects is gone.
Similarly, many cases of abstract factory methods can be replaced by having a companion object inherit from an appropriate trait.
Prototype
Of course overridden methods and the like have their place in Scala. However, the examples used for the Prototype pattern on the Design Patterns web site are rather inadvisable in Scala (or Java IMO). However, if you wish to have a superclass select actions based on its subclasses rather than letting them decide for themselves, you should use match rather than the clunky instanceof tests.
Singleton
Scala embraces these with object. They are singletons--use and enjoy!
Structural Patterns
Adapter
Scala's trait provides much more power here--rather than creating a class that implements an interface, for example, you can create a trait which implements only part of the interface, leaving the rest for you to define. For example, java.awt.event.MouseMotionListener requires you to fill in two methods:
def mouseDragged(me: java.awt.event.MouseEvent)
def mouseMoved(me: java.awt.event.MouseEvent)
Maybe you want to ignore dragging. Then you write a trait:
trait MouseMoveListener extends java.awt.event.MouseMotionListener {
def mouseDragged(me: java.awt.event.MouseEvent) {}
}
Now you can implement only mouseMoved when you inherit from this. So: similar pattern, but much more power with Scala.
Bridge
You can write bridges in Scala. It's a huge amount of boilerplate, though not quite as bad as in Java. I wouldn't recommend routinely using this as a method of abstraction; think about your interfaces carefully first. Keep in mind that with the increased power of traits that you can often use those to simplify a more elaborate interface in a place where otherwise you might be tempted to write a bridge.
In some cases, you may wish to write an interface transformer instead of the Java bridge pattern. For example, perhaps you want to treat drags and moves of the mouse using the same interface with only a boolean flag distinguishing them. Then you can
trait MouseMotioner extends java.awt.event.MouseMotionListener {
def mouseMotion(me: java.awt.event.MouseEvent, drag: Boolean): Unit
def mouseMoved(me: java.awt.event.MouseEvent) { mouseMotion(me, false) }
def mouseDragged(me: java.awt.event.MouseEvent) { mouseMotion(me, true) }
}
This lets you skip the majority of the bridge pattern boilerplate while accomplishing a high degree of implementation independence and still letting your classes obey the original interface (so you don't have to keep wrapping and unwrapping them).
Composite
The composite pattern is particularly easy to achieve with case classes, though making updates is rather arduous. It is equally valuable in Scala and Java.
Decorator
Decorators are awkward. You usually don't want to use the same methods on a different class in the case where inheritance isn't exactly what you want; what you really want is a different method on the same class which does what you want instead of the default thing. The enrich-my-library pattern is often a superior substitute.
Facade
Facade works better in Scala than in Java because you can have traits carry partial implementations around so you don't have to do all the work yourself when you combine them.
Flyweight
Although the flyweight idea is as valid in Scala as Java, you have a couple more tools at your disposal to implement it: lazy val, where a variable is not created unless it's actually needed (and thereafter is reused), and by-name parameters, where you only do the work required to create a function argument if the function actually uses that value. That said, in some cases the Java pattern stands unchanged.
Proxy
Works the same way in Scala as Java.
Behavioral Patterns
Chain of responsibility
In those cases where you can list the responsible parties in order, you can
xs.find(_.handleMessage(m))
assuming that everyone has a handleMessage method that returns true if the message was handled. If you want to mutate the message as it goes, use a fold instead.
Since it's easy to drop responsible parties into a Buffer of some sort, the elaborate framework used in Java solutions rarely has a place in Scala.
Command
This pattern is almost entirely superseded by functions. For example, instead of all of
public interface ChangeListener extends EventListener {
void stateChanged(ChangeEvent e)
}
...
void addChangeListener(ChangeListener listener) { ... }
you simply
def onChange(f: ChangeEvent => Unit)
Interpreter
Scala provides parser combinators which are dramatically more powerful than the simple interpreter suggested as a Design Pattern.
Iterator
Scala has Iterator built into its standard library. It is almost trivial to make your own class extend Iterator or Iterable; the latter is usually better since it makes reuse trivial. Definitely a good idea, but so straightforward I'd hardly call it a pattern.
Mediator
This works fine in Scala, but is generally useful for mutable data, and even mediators can fall afoul of race conditions and such if not used carefully. Instead, try when possible to have your related data all stored in one immutable collection, case class, or whatever, and when making an update that requires coordinated changes, change all things at the same time. This won't help you interface with javax.swing, but is otherwise widely applicable:
case class Entry(s: String, d: Double, notes: Option[String]) {}
def parse(s0: String, old: Entry) = {
try { old.copy(s = s0, d = s0.toDouble) }
catch { case e: Exception => old }
}
Save the mediator pattern for when you need to handle multiple different relationships (one mediator for each), or when you have mutable data.
Memento
lazy val is nearly ideal for many of the simplest applications of the memento pattern, e.g.
class OneRandom {
lazy val value = scala.util.Random.nextInt
}
val r = new OneRandom
r.value // Evaluated here
r.value // Same value returned again
You may wish to create a small class specifically for lazy evaluation:
class Lazily[A](a: => A) {
lazy val value = a
}
val r = Lazily(scala.util.Random.nextInt)
// not actually called until/unless we ask for r.value
Observer
This is a fragile pattern at best. Favor, whenever possible, either keeping immutable state (see Mediator), or using actors where one actor sends messages to all others regarding the state change, but where each actor can cope with being out of date.
State
This is equally useful in Scala, and is actually the favored way to create enumerations when applied to methodless traits:
sealed trait DayOfWeek
final trait Sunday extends DayOfWeek
...
final trait Saturday extends DayOfWeek
(often you'd want the weekdays to do something to justify this amount of boilerplate).
Strategy
This is almost entirely replaced by having methods take functions that implement a strategy, and providing functions to choose from.
def printElapsedTime(t: Long, rounding: Double => Long = math.round) {
println(rounding(t*0.001))
}
printElapsedTime(1700, math.floor) // Change strategy
Template Method
Traits offer so many more possibilities here that it's best to just consider them another pattern. You can fill in as much code as you can from as much information as you have at your level of abstraction. I wouldn't really want to call it the same thing.
Visitor
Between structural typing and implicit conversion, Scala has astoundingly more capability than Java's typical visitor pattern. There's no point using the original pattern; you'll just get distracted from the right way to do it. Many of the examples are really just wishing there was a function defined on the thing being visited, which Scala can do for you trivially (i.e. convert an arbitrary method to a function).
Ok, let's have a brief look at these patterns. I'm looking at all these patterns purely from a functional programming point of view, and leaving out many things that Scala can improve from an OO point of view. Rex Kerr answer provides an interesting counter-point to my own answers (I only read his answer after writing my own).
With that in mind, I'd like to say that it is important to study persistent data structures (functionally pure data structures) and monads. If you want to go deep, I think category theory basics are important -- category theory can formally describe all program structures, including imperative ones.
Creational Patterns
A constructor is nothing more than a function. A parameterless constructor for type T is nothing more than a function () => T, for example. In fact, Scala's syntactical sugar for functions is taken advantage on case classes:
case class T(x: Int)
That is equivalent to:
class T(val x: Int) { /* bunch of methods */ }
object T {
def apply(x: Int) = new T(x)
/* other stuff */
}
So that you can instantiate T with T(n) instead of new T(n). You could even write it like this:
object T extends Int => T {
def apply(x: Int) = new T(x)
/* other stuff */
}
Which turns T into a formal function, without changing any code.
This is the important point to keep in mind when thinking of creational patterns. So let's look at them:
Abstract Factory
This one is unlikely to change much. A class can be thought of as a group of closely related functions, so a group of closely related functions is easily implemented through a class, which is what this pattern does for constructors.
Builder
Builder patterns can be replaced by curried functions or partial function applications.
def makeCar: Size => Engine => Luxuries => Car = ???
def makeLargeCars = makeCar(Size.Large) _
def makeCar: (Size, Engine, Luxuries) => Car = ???
def makeLargeCars = makeCar(Size.Large, _: Engine, _: Luxuries)
Factory Method
Becomes obsolete if you discard subclassing.
Prototype
Doesn't change -- in fact, this is a common way of creating data in functional data structures. See case classes copy method, or all non-mutable methods on collections which return collections.
Singleton
Singletons are not particularly useful when your data is immutable, but Scala object implements this pattern is a safe manner.
Structural Patterns
This is mostly related to data structures, and the important point on functional programming is that the data structures are usually immutable. You'd be better off looking at persistent data structures, monads and related concepts than trying to translate these patterns.
Not that some patterns here are not relevant. I'm just saying that, as a general rule, you should look into the things above instead of trying to translate structural patterns into functional equivalents.
Adapter
This pattern is related to classes (nominal typing), so it remains important as long as you have that, and is irrelevant when you don't.
Bridge
Related to OO architecture, so the same as above.
Composite
Lot at Lenses and Zippers.
Decorator
A Decorator is just function composition. If you are decorating a whole class, that may not apply. But if you provide your functionality as functions, then composing a function while maintaining its type is a decorator.
Facade
Same comment as for Bridge.
Flyweight
If you think of constructors as functions, think of flyweight as function memoization. Also, Flyweight is intrinsic related to how persistent data structures are built, and benefits a lot from immutability.
Proxy
Same comment as for Adapter.
Behavioral Patterns
This is all over the place. Some of them are completely useless, while others are as relevant as always in a functional setting.
Chain of Responsibility
Like Decorator, this is function composition.
Command
This is a function. The undo part is not necessary if your data is immutable. Otherwise, just keep a pair of function and its reverse. See also Lenses.
Interpreter
This is a monad.
Iterator
It can be rendered obsolete by just passing a function to the collection. That's what Traversable does with foreach, in fact. Also, see Iteratee.
Mediator
Still relevant.
Memento
Useless with immutable objects. Also, its point is keeping encapsulation, which is not a major concern in FP.
Note that this pattern is not serialization, which is still relevant.
Observer
Relevant, but see Functional Reactive Programming.
State
This is a monad.
Strategy
A strategy is a function.
Template Method
This is an OO design pattern, so it's relevant for OO designs.
Visitor
A visitor is just a method receiving a function. In fact, that's what Traversable's foreach does.
In Scala, it can also be replaced with extractors.
I suppose, Command pattern not needed in functional languages at all. Instead of encapsulation command function inside object and then selecting appropriate object, just use appropriate function itself.
Flyweight is just cache, and has default implementation in most functional languages (memoize in clojure)
Even Template method, Strategy and State can be implemented with just passing appropriate function in method.
So, I recommend to not go deep in Design Patterns when you tries yourself in functional style but reading some books about functional concepts (high-order functions, laziness, currying, and so on)

How does Scala's apply() method magic work?

In Scala, if I define a method called apply in a class or a top-level object, that method will be called whenever I append a pair a parentheses to an instance of that class, and put the appropriate arguments for apply() in between them. For example:
class Foo(x: Int) {
def apply(y: Int) = {
x*x + y*y
}
}
val f = new Foo(3)
f(4) // returns 25
So basically, object(args) is just syntactic sugar for object.apply(args).
How does Scala do this conversion?
Is there a globally defined implicit conversion going on here, similar to the implicit type conversions in the Predef object (but different in kind)? Or is it some deeper magic? I ask because it seems like Scala strongly favors consistent application of a smaller set of rules, rather than many rules with many exceptions. This initially seems like an exception to me.
I don't think there's anything deeper going on than what you have originally said: it's just syntactic sugar whereby the compiler converts f(a) into f.apply(a) as a special syntax case.
This might seem like a specific rule, but only a few of these (for example, with update) allows for DSL-like constructs and libraries.
It is actually the other way around, an object or class with an apply method is the normal case and a function is way to construct implicitly an object of the same name with an apply method. Actually every function you define is an subobject of the Functionn trait (n is the number of arguments).
Refer to section 6.6:Function Applications of the Scala Language Specification for more information of the topic.
I ask because it seems like Scala strongly favors consistent application of a smaller set of rules, rather than many rules with many exceptions.
Yes. And this rule belongs to this smaller set.