How do I go about using Socket.select in Standard ML?
According to the docs, I'm supposed to pass it three lists of sockets and a timeout option, and the function returns when any of the sockets are ready to do something (and I assume, but don't know for sure that the sockets in the out list are only the ones that need attention). However,
The input seems to be neither a tuple, nor four arguments. How do I go about constructing an appropriate input structure?
select takes and returns lists of sock_desc, and there doesn't seem to be a way of getting a socket back from its sock_desc. There also doesn't seem to be a way of constructing an efficient map, since it doesn't seem to be possible to order two sock_descs, merely compare them for equality. Once I've got the return value from select, how do I do anything useful with the returned sockets, such as write responses out, or call accept on them?
The input argument is a record with four fields, so your code should look something like this:
Socket.select {
rds = readSocketDescs,
wrs = writeSocketDescs,
exs = exnSocketDescs,
timeout = SOME (Time.fromSeconds 10)
}
Yeah, not sure, probably you need to keep a mapping yourself using lists. Not very efficient, but I can't see what else you can do.
(**
* Produces a list of all the pairs in `listPair`, whose keys are present
* in `whiteList`. Example:
*
* ```sml
* - filterListPair op= [(1,"a"), (2,"b"), (3,"c")] [2,3];
* val it = [(2,"b"),(3,"c")] : (int * string) list
* ```
*)
fun filterListPair eq listPair whiteList =
let
fun recur listPair whiteList result =
case (listPair, whiteList) of
([], _) => result
| (_, []) => result
| ((x, y) :: xs, k :: ks) =>
if eq (x, k)
then recur xs ks ((x, y) :: result)
else recur xs whiteList result
in
List.rev (recur listPair whiteList [])
end
val sockets = [ (* what have you *) ]
val descsToSockets = List.map (fn s => (Socket.sockDesc s, s)) sockets
val { rds, wrs, exs } = Socket.select {
rds = readSocketDescs,
wrs = writeSocketDescs,
exs = exnSocketDescs,
timeout = SOME (Time.fromSeconds 10)
}
(*
* The contract of Socket.select ensures that the order in input lists
* is preserved in the output lists, so we can use `filterListPair`.
*)
val selectedReadSockets =
filterListPair Socket.sameDesc descsToSockets rds
Related
Functional programming style of coding guideline says we should not use null or var in Scala for better functional programming code.
I want to perform some operation like below
var a = 2
if(condition==true){
a = a * 3 /*someOperation*/
}
if(condition2==true){
a = a * 6 /*someOperation*/
}
if(condition3==true){
a = a * 8 /*someOperation*/
}
val b = a * 2/*someOperation*/
So now how to avoid var in this condition and replace it with val?
The simplest way to avoid var with multiple conditions is to use temporary values
val a1 = 2
val a2 = if (condition) a1*3 else a1
val a3 = if (condition2) a2*6 else a2
val a = if (condition3) a3*8 else a3
val b = a * 2/*someOperation*/
In the real code you would give a1, a2, and a3 meaningful names to describe the result of each stage of processing.
If you are bothered about having these extra values in scope, put it in a block:
val a = {
val a1 = 2
val a2 = if (condition) a1*3 else a1
val a3 = if (condition2) a2*6 else a2
if (condition3) a3*8 else a3
}
Update
If you want a more functional approach, collect the conditions and modifications together and apply them in turn, like this:
val mods: List[(Boolean, Int=>Int)] = List(
(condition, _*3),
(condition2, _*6),
(condition3, _*8)
)
val a = mods.foldLeft(2){ case (a,(cond, mod)) => if (cond) mod(a) else a }
This is really only appropriate when either the conditions or the modifications are more complex, and keeping them together makes the code clearer.
val a = 2 * (if (condition) 3 else 1)
val b = 2 * a
Or, perhaps...
val a = 2
val b = 2 * (if (condition) a*3 else a)
It depends on if/how a is used after these operations.
I think you might have oversimplified your example, because we know the value of a when writing the code so you could just write it out like this:
val a = if (condition) 2 else 6
val b = a * 2
Assuming your real operation is more complex and can't be precalculated like that, then you might find a pattern match like this is a nicer way to do it:
val a = (condition, 2) match {
case (true, z) =>
z * 3
case (false, z) =>
z
}
val b = a * 2
You can try the following approach:
type Modification = Int => Int
type ModificationNo = Int
type Conditions = Map[ModificationNo, Boolean]
val modifications: List[(Modification, ModificationNo)] =
List[Modification](
a => a * 3,
a => a * 6,
a => a * 8
).zipWithIndex
def applyModifications(initial: Int, conditions: Conditions): Int =
modifications.foldLeft[Int](initial) {
case (currentA, (modificationFunc, modificationNo)) =>
if (conditions(modificationNo)) modificationFunc(currentA)
else currentA
}
val a: Int = applyModifications(initial = 2,
conditions = Map(0 -> true, 1 -> false, 2 -> true))
It may look complicated but this approach allows additional flexibility if number of conditions is big enough.
Now when you have to add more conditions, you don't need to write new if-statements and further reassignments to var. Just add a modification function to an existing list of
there is no 1 perfect solution.
sometimes it is ok to use var if it simplifies the code and limited in scope of a single function.
that being said, this is how I would do it in functional way:
val op1: Int => Int =
if (condition1) x => x * 3
else identity
val op2: Int => Int =
if (condition2) x => x * 6
else identity
val op3: Int => Int =
if (condition3) x => x * 8
else identity
val op = op1 andThen op2 andThen op3
// can also be written as
// val op = Seq(op1, op2, op3).reduceLeft(_ andThen _)
val a = 2
val b = op(a) * 2
The easiest way it to wrap your variable into a monad, so that you .map over it. The simplest monad is an Option, so you could write:
val result = Option(a).map {
case a if condition => a*2
case a => a
}.map {
case a if condition2 => a*6
case a => a
}.fold(a) {
case a if condition3 => a*8
case a => a
}
(The last operation is fold instead of map so that you end up with the "raw" value for the result, rather than an option. Equivalently, you could write it as a .map, and then add .getOrElse(a) at the end).
When you have many conditional operations like this, or many use cases where you have to repeat the pattern, it might help to put them into a list, and then traverse that list instead:
def applyConditionals[T](toApply: (() => Boolean, T => T)*) = toApply
.foldLeft(a) {
case (a, (cond, oper)) if cond() => oper(a)
case (a, _) => a
}
val result = applyConditionals[Int] (
(() => condition, _ * 2),
(() => condition2, _ * 6),
(() => condition3, _ * 8)
)
The important point is that FP is a whole new paradigm of programming. Its so fundamentally different that sometimes you can not take an excerpt of imperative code and try to convert it to functional code.
The difference applies not just to code but to the way of thinking towards solving a problem. Functional programming requires you to think in terms of chained mathematical computation which are more or less independent of each other (which means that each of these mathematical computation should not be changing anything outside of its own environment).
Functional programming totally avoids mutation of state. So, if your solution has a requirement to have a variable x which has a value 10 at one point and other value 100 at some other point... then your solution is not functional. And you can not write function code for a solution which is not functional.
Now, if you look at your case (assuming you do not actually need a to be 2 and then change to 6 after sometime) and try to convert it into chain of independent mathematical computation, then the simplest one is following,
val a = if (condition) 2 else 6
val b = a * 2
Suppose that I use a sequence of various maps and/or flatMaps to generate a sequence of collections. Is it possible to access information about the "current" collection from within any of those methods? For example, without knowing anything specific about the functions used in the previous maps or flatMaps, and without using any intermediate declarations, how can I get the maximum value (or length, or first element, etc.) of the collection upon which the last map acts?
List(1, 2, 3)
.flatMap(x => f(x) /* some unknown function */)
.map(x => x + ??? /* what is the max element of the collection? */)
Edit for clarification:
In the example, I'm not looking for the max (or whatever) of the initial List. I'm looking for the max of the collection after the flatMap has been applied.
By "without using any intermediate declarations" I mean that I do not want to use any temporary collections en route to the final result. So, the example by Steve Waldman below, while giving the desired result, is not what I am seeking. (I include this condition is mostly for aesthetic reasons.)
Edit for clarification, part 2:
The ideal solution would be some magic keyword or syntactic sugar that lets me reference the current collection:
List(1, 2, 3)
.flatMap(x => f(x))
.map(x => x + theCurrentList.max)
I'm prepared to accept the fact, however, that this simply is not possible.
Maybe just define the list as a val, so you can name it? I don't know of any facility built into map(...) or flatMap(...) that would help.
val myList = List(1, 2, 3)
myList
.flatMap(x => f(x) /* some unknown function */)
.map(x => x + myList.max /* what is the max element of the List? */)
Update: By this approach at least, if you have multiple transformations and want to see the transformed version, you'd have to name that. You could get away with
val myList = List(1, 2, 3).flatMap(x => f(x) /* some unknown function */)
myList.map(x => x + myList.max /* what is the max element of the List? */)
Or, if there will be multiple transformations, get in the habit of naming the stages.
val rawList = List(1, 2, 3)
val smordified = rawList.flatMap(x => f(x) /* some unknown function */)
val maxified = smordified.map(x => x + smordified.max /* what is the max element of the List? */)
maxified
Update 2: Watch it work in the REPL even with heterogenous types:
scala> def f( x : Int ) : Vector[Double] = Vector(x * math.random, x * math.random )
f: (x: Int)Vector[Double]
scala> val rawList = List(1, 2, 3)
rawList: List[Int] = List(1, 2, 3)
scala> val smordified = rawList.flatMap(x => f(x) /* some unknown function */)
smordified: List[Double] = List(0.40730853571901315, 0.15151641399798665, 1.5305929709857609, 0.35211231420067435, 0.644241939254793, 0.15530230501048903)
scala> val maxified = smordified.map(x => x + smordified.max /* what is the max element of the List? */)
maxified: List[Double] = List(1.937901506704774, 1.6821093849837476, 3.0611859419715217, 1.8827052851864352, 2.1748349102405538, 1.6858952759962498)
scala> maxified
res3: List[Double] = List(1.937901506704774, 1.6821093849837476, 3.0611859419715217, 1.8827052851864352, 2.1748349102405538, 1.6858952759962498)
It is possible, but not pretty, and not likely something you want if you are doing it for "aesthetic reasons."
import scala.math.max
def f(x: Int): Seq[Int] = ???
List(1, 2, 3).
flatMap(x => f(x) /* some unknown function */).
foldRight((List[Int](),List[Int]())) {
case (x, (xs, Nil)) => ((x :: xs), List.fill(xs.size + 1)(x))
case (x, (xs, xMax :: _)) => ((x :: xs), List.fill(xs.size + 1)(max(x, xMax)))
}.
zipped.
map {
case (x, xMax) => x + xMax
}
// Or alternately, a slightly more efficient version using Streams.
List(1, 2, 3).
flatMap(x => f(x) /* some unknown function */).
foldRight((List[Int](),Stream[Int]())) {
case (x, (xs, Stream())) =>
((x :: xs), Stream.continually(x))
case (x, (xs, curXMax #:: _)) =>
val newXMax = max(x, curXMax)
((x :: xs), Stream.continually(newXMax))
}.
zipped.
map {
case (x, xMax) => x + xMax
}
Seriously though, I just took this on to see if I could do it. While the code didn't turn out as bad as I expected, I still don't think it's particularly readable. I'd discourage using this over something similar to Steve Waldman's answer. Sometimes, it's simply better to just introduce a val, rather than being dogmatic about it.
You could define a mapWithSelf (resp. flatMapWithSelf) operation along these lines and add it as an implicit enrichment to the collection. For List it might look like:
// Scala 2.13 APIs
object Enrichments {
implicit class WithSelfOps[A](val lst: List[A]) extends AnyVal {
def mapWithSelf[B](f: (A, List[A]) => B): List[B] =
lst.map(f(_, lst))
def flatMapWithSelf[B](f: (A, List[A]) => IterableOnce[B]): List[B] =
lst.flatMap(f(_, lst))
}
}
The enrichment basically fixes the value of the collection before the operation and threads it through. It should be possible to generify this (at least for the strict collections), though it would look a little different in 2.12 vs. 2.13+.
Usage would look like
import Enrichments._
val someF: Int => IterableOnce[Int] = ???
List(1, 2, 3)
.flatMap(someF)
.mapWithSelf { (x, lst) =>
x + lst.max
}
So at the usage site, it's aesthetically pleasant. Note that if you're computing something which traverses the list, you'll be traversing the list every time (leading to a quadratic runtime). You can get around that with some mutability or by just saving the intermediate list after the flatMap.
One somewhat-simple way of referencing prior output within the current map/collect operation is to use a named reference outside the map, then reference it from within the map block:
var prevOutput = ... // starting value of whatever is referenced within the map
myValues.map {
prevOutput = ... // expression that references prior `prevOutput`
prevOutput // return above computed value for the map to collect
}
This draws attention to the fact that we're referencing prior elements while building the new sequence.
This would be more messy, though, if you wanted to reference arbitrarily previous values, not just the previous one.
I was wondering what is the most elegant way of getting the increasing prefix of a given sequence. My idea is as follows, but it is not purely functional or any elegant:
val sequence = Seq(1,2,3,1,2,3,4,5,6)
var currentElement = sequence.head - 1
val increasingPrefix = sequence.takeWhile(e =>
if (e > currentElement) {
currentElement = e
true
} else
false)
The result of the above is:
List(1,2,3)
You can take your solution, #Samlik, and effectively zip in the currentElement variable, but then map it out when you're done with it.
sequence.take(1) ++ sequence.zip(sequence.drop(1)).
takeWhile({case (a, b) => a < b}).map({case (a, b) => b})
Also works with infinite sequences:
val sequence = Seq(1, 2, 3).toStream ++ Stream.from(1)
sequence is now an infinite Stream, but we can peek at the first 10 items:
scala> sequence.take(10).toList
res: List[Int] = List(1, 2, 3, 1, 2, 3, 4, 5, 6, 7)
Now, using the above snippet:
val prefix = sequence.take(1) ++ sequence.zip(sequence.drop(1)).
takeWhile({case (a, b) => a < b}).map({case (a, b) => b})
Again, prefix is a Stream, but not infinite.
scala> prefix.toList
res: List[Int] = List(1, 2, 3)
N.b.: This does not handle the cases when sequence is empty, or when the prefix is also infinite.
If by elegant you mean concise and self-explanatory, it's probably something like the following:
sequence.inits.dropWhile(xs => xs != xs.sorted).next
inits gives us an iterator that returns the prefixes longest-first. We drop all the ones that aren't sorted and take the next one.
If you don't want to do all that sorting, you can write something like this:
sequence.scanLeft(Some(Int.MinValue): Option[Int]) {
case (Some(last), i) if i > last => Some(i)
case _ => None
}.tail.flatten
If the performance of this operation is really important, though (it probably isn't), you'll want to use something more imperative, since this solution still traverses the entire collection (twice).
And, another way to skin the cat:
val sequence = Seq(1,2,3,1,2,3,4,5,6)
sequence.head :: sequence
.sliding(2)
.takeWhile{case List(a,b) => a <= b}
.map(_(1)).toList
// List[Int] = List(1, 2, 3)
I will interpret elegance as the solution that most closely resembles the way we humans think about the problem although an extremely efficient algorithm could also be a form of elegance.
val sequence = List(1,2,3,2,3,45,5)
val increasingPrefix = takeWhile(sequence, _ < _)
I believe this code snippet captures the way most of us probably think about the solution to this problem.
This of course requires defining takeWhile:
/**
* Takes elements from a sequence by applying a predicate over two elements at a time.
* #param xs The list to take elements from
* #param f The predicate that operates over two elements at a time
* #return This function is guaranteed to return a sequence with at least one element as
* the first element is assumed to satisfy the predicate as there is no previous
* element to provide the predicate with.
*/
def takeWhile[A](xs: Traversable[A], f: (Int, Int) => Boolean): Traversable[A] = {
// function that operates over tuples and returns true when the predicate does not hold
val not = f.tupled.andThen(!_)
// Maybe one day our languages will be better than this... (dependant types anyone?)
val twos = sequence.sliding(2).map{case List(one, two) => (one, two)}
val indexOfBreak = twos.indexWhere(not)
// Twos has one less element than xs, we need to compensate for that
// An intuition is the fact that this function should always return the first element of
// a non-empty list
xs.take(i + 1)
}
I'm new to Scala and trying to figure out the best way to filter & map a collection. Here's a toy example to explain my problem.
Approach 1: This is pretty bad since I'm iterating through the list twice and calculating the same value in each iteration.
val N = 5
val nums = 0 until 10
val sqNumsLargerThanN = nums filter { x: Int => (x * x) > N } map { x: Int => (x * x).toString }
Approach 2: This is slightly better but I still need to calculate (x * x) twice.
val N = 5
val nums = 0 until 10
val sqNumsLargerThanN = nums collect { case x: Int if (x * x) > N => (x * x).toString }
So, is it possible to calculate this without iterating through the collection twice and avoid repeating the same calculations?
Could use a foldRight
nums.foldRight(List.empty[Int]) {
case (i, is) =>
val s = i * i
if (s > N) s :: is else is
}
A foldLeft would also achieve a similar goal, but the resulting list would be in reverse order (due to the associativity of foldLeft.
Alternatively if you'd like to play with Scalaz
import scalaz.std.list._
import scalaz.syntax.foldable._
nums.foldMap { i =>
val s = i * i
if (s > N) List(s) else List()
}
The typical approach is to use an iterator (if possible) or view (if iterator won't work). This doesn't exactly avoid two traversals, but it does avoid creation of a full-sized intermediate collection. You then map first and filter afterwards and then map again if needed:
xs.iterator.map(x => x*x).filter(_ > N).map(_.toString)
The advantage of this approach is that it's really easy to read and, since there are no intermediate collections, it's reasonably efficient.
If you are asking because this is a performance bottleneck, then the answer is usually to write a tail-recursive function or use the old-style while loop method. For instance, in your case
def sumSqBigN(xs: Array[Int], N: Int): Array[String] = {
val ysb = Array.newBuilder[String]
def inner(start: Int): Array[String] = {
if (start >= xs.length) ysb.result
else {
val sq = xs(start) * xs(start)
if (sq > N) ysb += sq.toString
inner(start + 1)
}
}
inner(0)
}
You can also pass a parameter forward in inner instead of using an external builder (especially useful for sums).
I have yet to confirm that this is truly a single pass, but:
val sqNumsLargerThanN = nums flatMap { x =>
val square = x * x
if (square > N) Some(x) else None
}
You can use collect which applies a partial function to every value of the collection that it's defined at. Your example could be rewritten as follows:
val sqNumsLargerThanN = nums collect {
case (x: Int) if (x * x) > N => (x * x).toString
}
A very simple approach that only does the multiplication operation once. It's also lazy, so it will be executing code only when needed.
nums.view.map(x=>x*x).withFilter(x => x> N).map(_.toString)
Take a look here for differences between filter and withFilter.
Consider this for comprehension,
for (x <- 0 until 10; v = x*x if v > N) yield v.toString
which unfolds to a flatMap over the range and a (lazy) withFilter onto the once only calculated square, and yields a collection with filtered results. To note one iteration and one calculation of square is required (in addition to creating the range).
You can use flatMap.
val sqNumsLargerThanN = nums flatMap { x =>
val square = x * x
if (square > N) Some(square.toString) else None
}
Or with Scalaz,
import scalaz.Scalaz._
val sqNumsLargerThanN = nums flatMap { x =>
val square = x * x
(square > N).option(square.toString)
}
The solves the asked question of how to do this with one iteration. This can be useful when streaming data, like with an Iterator.
However...if you are instead wanting the absolute fastest implementation, this is not it. In fact, I suspect you would use a mutable ArrayList and a while loop. But only after profiling would you know for sure. In any case, that's for another question.
Using a for comprehension would work:
val sqNumsLargerThanN = for {x <- nums if x*x > N } yield (x*x).toString
Also, I'm not sure but I think the scala compiler is smart about a filter before a map and will only do 1 pass if possible.
I am also beginner did it as follows
for(y<-(num.map(x=>x*x)) if y>5 ) { println(y)}
Recently I had an interview for Scala Developer position. I was asked such question
// matrix 100x100 (content unimportant)
val matrix = Seq.tabulate(100, 100) { case (x, y) => x + y }
// A
for {
row <- matrix
elem <- row
} print(elem)
// B
val func = print _
for {
row <- matrix
elem <- row
} func(elem)
and the question was: Which implementation, A or B, is more efficent?
We all know that for comprehensions can be translated to
// A
matrix.foreach(row => row.foreach(elem => print(elem)))
// B
matrix.foreach(row => row.foreach(func))
B can be written as matrix.foreach(row => row.foreach(print _))
Supposedly correct answer is B, because A will create function print 100 times more.
I have checked Language Specification but still fail to understand the answer. Can somebody explain this to me?
In short:
Example A is faster in theory, in practice you shouldn't be able to measure any difference though.
Long answer:
As you already found out
for {xs <- xxs; x <- xs} f(x)
is translated to
xxs.foreach(xs => xs.foreach(x => f(x)))
This is explained in §6.19 SLS:
A for loop
for ( p <- e; p' <- e' ... ) e''
where ... is a (possibly empty) sequence of generators, definitions, or guards, is translated to
e .foreach { case p => for ( p' <- e' ... ) e'' }
Now when one writes a function literal, one gets a new instance every time the function needs to be called (§6.23 SLS). This means that
xs.foreach(x => f(x))
is equivalent to
xs.foreach(new scala.Function1 { def apply(x: T) = f(x)})
When you introduce a local function type
val g = f _; xxs.foreach(xs => xs.foreach(x => g(x)))
you are not introducing an optimization because you still pass a function literal to foreach. In fact the code is slower because the inner foreach is translated to
xs.foreach(new scala.Function1 { def apply(x: T) = g.apply(x) })
where an additional call to the apply method of g happens. Though, you can optimize when you write
val g = f _; xxs.foreach(xs => xs.foreach(g))
because the inner foreach now is translated to
xs.foreach(g())
which means that the function g itself is passed to foreach.
This would mean that B is faster in theory, because no anonymous function needs to be created each time the body of the for comprehension is executed. However, the optimization mentioned above (that the function is directly passed to foreach) is not applied on for comprehensions, because as the spec says the translation includes the creation of function literals, therefore there are always unnecessary function objects created (here I must say that the compiler could optimize that as well, but it doesn't because optimization of for comprehensions is difficult and does still not happen in 2.11). All in all it means that A is more efficient but B would be more efficient if it is written without a for comprehension (and no function literal is created for the innermost function).
Nevertheless, all of these rules can only be applied in theory, because in practice there is the backend of scalac and the JVM itself which both can do optimizations - not to mention optimizations that are done by the CPU. Furthermore your example contains a syscall that is executed on every iteration - it is probably the most expensive operation here that outweighs everything else.
I'd agree with sschaef and say that A is the more efficient option.
Looking at the generated class files we get the following anonymous functions and their apply methods:
MethodA:
anonfun$2 -- row => row.foreach(new anonfun$2$$anonfun$1)
anonfun$2$$anonfun$1 -- elem => print(elem)
i.e. matrix.foreach(row => row.foreach(elem => print(elem)))
MethodB:
anonfun$3 -- x => print(x)
anonfun$4 -- row => row.foreach(new anonfun$4$$anonfun$2)
anonfun$4$$anonfun$2 -- elem => func(elem)
i.e. matrix.foreach(row => row.foreach(elem => func(elem)))
where func is just another indirection before calling to print. In addition func needs to be looked up, i.e. through a method call on an instance (this.func()) for each row.
So for Method B, 1 extra object is created (func) and there are # of elem additional function calls.
The most efficient option would be
matrix.foreach(row => row.foreach(func))
as this has the least number of objects created and does exactly as you would expect.
Benchmark
Summary
Method A is nearly 30% faster than method B.
Link to code: https://gist.github.com/ziggystar/490f693bc39d1396ef8d
Implementation Details
I added method C (two while loops) and D (fold, sum). I also increased the size of the matrix and used an IndexedSeq instead. Also I replaced the print with something less heavy (sum all entries).
Strangely the while construct is not the fastest. But if one uses Array instead of IndexedSeq it becomes the fastest by a large margin (factor 5, no boxing anymore). Using explicitly boxed integers, methods A, B, C are all equally fast. In particular they are faster by 50% compared to the implicitly boxed versions of A, B.
Results
A
4.907797735
4.369745787
4.375195012000001
4.7421321800000005
4.35150636
B
5.955951859000001
5.925475619
5.939570085000001
5.955592247
5.939672226000001
C
5.991946029
5.960122757000001
5.970733164
6.025532582
6.04999499
D
9.278486201
9.265983922
9.228320372
9.255641645
9.22281905
verify results
999000000
999000000
999000000
999000000
>$ scala -version
Scala code runner version 2.11.0 -- Copyright 2002-2013, LAMP/EPFL
Code excerpt
val matrix = IndexedSeq.tabulate(1000, 1000) { case (x, y) => x + y }
def variantA(): Int = {
var r = 0
for {
row <- matrix
elem <- row
}{
r += elem
}
r
}
def variantB(): Int = {
var r = 0
val f = (x:Int) => r += x
for {
row <- matrix
elem <- row
} f(elem)
r
}
def variantC(): Int = {
var r = 0
var i1 = 0
while(i1 < matrix.size){
var i2 = 0
val row = matrix(i1)
while(i2 < row.size){
r += row(i2)
i2 += 1
}
i1 += 1
}
r
}
def variantD(): Int = matrix.foldLeft(0)(_ + _.sum)