Matlab Newton's Method Code - matlab

I am attempting to write a Matlab code for a Numerical Analysis class I am in. We are to create a matrix entitled 'picture' which corresponds to a 1000 x 1000 array which evenly covers the square [-1,1] x [-1,1] in the complex plane. Each of these 1000000 points must be compared to the roots of the function f(x)=x^3 + 1 (which are 1, (1+sqrt(3)i)/2, and (1-sqrt(3)i)/2, I believe). Using Newton's Method and each of the 1000000 points as our initial approximation, we are supposed to get an approximation of a root of the function at each point. Then if the norm(approximate root minus one of the 3 actual roots) is less than a user-defined tolerance, we make that point in the 1000 x 1000 array one of 4 color codes: 0, 20, 40, or 60. Essentially each point (and corresponding approximate root) will be a different color depending on which of the actual roots it is closest to.
I have been working on this code for so long and I can't be more specific about my problem because I just have no idea where I am going wrong. I have attached my code in the hopes that somebody might read it and see a horrible (yet easily fixable) mistake! Every time I run the code I get a huge matrix of zeros.
function [] = coloredroots()
nPoints = 1000;
picture = zeros(nPoints, nPoints);
for a = 1 : nPoints
for b = 1 : nPoints
double z;
z = (-1 + (a*0.002)) + 1i*(-1 + (b*0.002)); %%z is complex number,0.002 is the %%increment size that allows 1000 steps between -1 and 1
f = #(x) (x^3) + 1; %%the function we are finding the roots of
fprime = #(x) 3*(x^2);
nmax = 100; %%maximum number of iterations of Newton's method
error= 10^(-1); %%user-created max error
tolerance = 10^(-1); %%how close we want the approx roots to be to the actual roots, %% also user-created
double code;
root = newton(f, fprime, (-1 + (a*(0.002))), nmax, error);
code = getColorCode(root, tolerance);
picture(a,b) = code; %%storing the color code found using initial approximation of %%point (a,b) into the matrix 'picture' in row a, column b
end
end
image(picture)
print('plot_coloredroots', '-dpng');
%%My teacher instructed us to include these 2 above lines although I am yet to define a %%plot
function [x] = newton(f, fprime, x, nmax, error)
for n = 1:nmax
d = f(x)/fprime(x);
x = x - d;
if abs(d) < error
return
end
end
end
function [c] = getColorCode(root, tolerance)
if norm(root - 1.0) < tolerance
c = 20;
elseif norm(root - (0.5*sqrt(3)*1i - 0.5)) < tolerance
c = 40;
elseif norm(root - (-0.5*sqrt(3)*1i - 0.5)) < tolerance
c = 60;
else
c = 0;
end
end
end

Related

Laguerre's method to obtain poly roots (Matlab)

I must write using Laguerre's method a piece of code to find the real and complex roots of poly:
P=X^5-5*X^4-6*X^3+6*X^2-3*X+1
I have little doubt. I did the algorithm in the matlab, but 3 out of 5 roots are the same and I don't think that is correct.
syms X %Declearing x as a variabl
P=X^5-5*X^4-6*X^3+6*X^2-3*X+1; %Equation we interest to solve
n=5; % The eq. order
Pd1 = diff(P,X,1); % first differitial of f
Pd2 = diff(P,X,2); %second differitial of f
err=0.00001; %Answear tollerance
N=100; %Max. # of Iterations
x(1)=1e-3; % Initial Value
for k=1:N
G=double(vpa(subs(Pd1,X,x(k))/subs(P,X,x(k))));
H=G^2 - double(subs(Pd2,X,x(k))) /subs(P,X,x(k));
D1= (G+sqrt((n-1)*(n*H-G^2)));
D2= (G-sqrt((n-1)*(n*H-G^2)));
D = max(D1,D2);
a=n/D;
x(k+1)=x(k)-a
Err(k) = abs(x(k+1)-x(k));
if Err(k) <=err
break
end
end
output (roots of polynomial):
x =
0.0010 + 0.0000i 0.1434 + 0.4661i 0.1474 + 0.4345i 0.1474 + 0.4345i 0.1474 + 0.4345i
What you actually see are all the values x(k) which arose in the loop. The last one, 0.1474 + 0.4345i is the end result of this loop - the approximation of the root which is in your given tolerance threshold. The code
syms X %Declaring x as a variable
P = X^5 - 5 * X^4 - 6 * X^3 + 6 * X^2 - 3 * X + 1; %Polynomial
n=5; %Degree of the polynomial
Pd1 = diff(P,X,1); %First derivative of P
Pd2 = diff(P,X,2); %Second derivative of P
err = 0.00001; %Answer tolerance
N = 100; %Maximal number of iterations
x(1) = 0; %Initial value
for k = 1:N
G = double(vpa(subs(Pd1,X,x(k)) / subs(P,X,x(k))));
H = G^2 - double(subs(Pd2,X,x(k))) / subs(P,X,x(k));
D1 = (G + sqrt((n-1) * (n * H-G^2)));
D2 = (G - sqrt((n-1) * (n * H-G^2)));
D = max(D1,D2);
a = n/D;
x(k+1) = x(k) - a;
Err(k) = abs(x(k+1)-x(k));
if Err(k) <=err
fprintf('Initial value %f, result %f%+fi', x(1), real(x(k)), imag(x(k)))
break
end
end
results in
Initial value -2.000000, result -1.649100+0.000000i
If you want to get other roots, you have to use other initial values. For example one can obtain
Initial value 10.000000, result 5.862900+0.000000i
Initial value -2.000000, result -1.649100+0.000000i
Initial value 3.000000, result 0.491300+0.000000i
Initial value 0.000000, result 0.147400+0.434500i
Initial value 1.000000, result 0.147400-0.434500i
These are all zeros of the polynomial.
A method for calculating the next root when you have found another one would be that you divide through the corresponding linear factor and use your loop for the resulting new polynomial. Note that this is in general not very easy to handle since rounding errors can have a big influence on the result.
Problems with the existing code
You do not implement the Laguerre method properly as a method in complex numbers. The denominator candidates D1,D2 are in general complex numbers, it is inadvisable to use the simple max which only has sensible results for real inputs. The aim is to have a=n/D be the smaller of both variants, so that one has to look for the D in [D1,D2] with the larger absolute value. If there were a conditional assignment as in C, this would look like
D = (abs(D_1)>abs(D2)) ? D1 : D2;
As that does not exist, one has to use commands with a similar result
D = D1; if (abs(D_1)<abs(D2)) D=D2; end
The resulting sequence of approximation points is
x(0) = 0.0010000
x(1) = 0.143349512707684+0.466072958423667i
x(2) = 0.164462212064089+0.461399841949893i
x(3) = 0.164466373475316+0.461405404094130i
There is a point where one can not expect the (residual) polynomial value at the root approximation to substantially decrease. The value close to zero is obtained by adding and subtracting rather large terms in the sum expression of the polynomial. The accuracy lost in these catastrophic cancellation events can not be recovered.
The threshold for polynomial values that are effectively zero can be estimated as the machine constant of the double type times the polynomial value where all coefficients and the evaluation point are replaced by their absolute values. This test serves in the code primarily to avoid divisions by zero or near-zero.
Finding all roots
One approach is to apply the method to a sufficiently large number of initial points along some circle containing all the roots, with some strict rules for early termination at too slow convergence. One would have to make the list of the roots found unique, but keep the multiplicity,...
The other standard method is to apply deflation, that is, divide out the linear factor of the root found. This works well in low degrees.
There is no need for the slower symbolic operations as there are functions that work directly on the coefficient array, such as polyval and polyder. Deflation by division with remainder can be achieved using the deconv function.
For real polynomials, we know that the complex conjugate of a root is also a root. Thus initialize the next iteration with the deflated polynomial with it.
Other points:
There is no point in the double conversions as at no point there is a conversion into the single type.
If you don't do anything with it, it makes no sense to create an array, especially not for Err.
Roots of the example
Implementing all this I get a log of
x(0) = 0.001000000000000+0.000000000000000i, |Pn(x(0))| = 0.99701
x(1) = 0.143349512707684+0.466072958423667i, |dx|= 0.48733
x(2) = 0.164462212064089+0.461399841949893i, |dx|=0.021624
x(3) = 0.164466373475316+0.461405404094130i, |dx|=6.9466e-06
root found x=0.164466373475316+0.461405404094130i with value P0(x)=-2.22045e-16+9.4369e-16i
Deflation
x(0) = 0.164466373475316-0.461405404094130i, |Pn(x(0))| = 2.1211e-15
root found x=0.164466373475316-0.461405404094130i with value P0(x)=-2.22045e-16-9.4369e-16i
Deflation
x(0) = 0.164466373475316+0.461405404094130i, |Pn(x(0))| = 4.7452
x(1) = 0.586360702193454+0.016571894375927i, |dx|= 0.61308
x(2) = 0.562204173408499+0.000003168181059i, |dx|=0.029293
x(3) = 0.562204925474889+0.000000000000000i, |dx|=3.2562e-06
root found x=0.562204925474889+0.000000000000000i with value P0(x)=2.22045e-16-1.33554e-17i
Deflation
x(0) = 0.562204925474889-0.000000000000000i, |Pn(x(0))| = 7.7204
x(1) = 3.332994579372812-0.000000000000000i, |dx|= 2.7708
root found x=3.332994579372812-0.000000000000000i with value P0(x)=6.39488e-14-3.52284e-15i
Deflation
x(0) = 3.332994579372812+0.000000000000000i, |Pn(x(0))| = 5.5571
x(1) = -2.224132251798332+0.000000000000000i, |dx|= 5.5571
root found x=-2.224132251798332+0.000000000000000i with value P0(x)=-3.33067e-14+1.6178e-15i
for the modified code
P = [1, -2, -6, 6, -3, 1];
P0 = P;
deg=length(P)-1; % The eq. degree
err=1e-05; %Answer tolerance
N=10; %Max. # of Iterations
x=1e-3; % Initial Value
for n=deg:-1:1
dP = polyder(P); % first derivative of P
d2P = polyder(dP); %second derivative of P
fprintf("x(0) = %.15f%+.15fi, |Pn(x(0))| = %8.5g\n", real(x),imag(x), abs(polyval(P,x)));
for k=1:N
Px = polyval(P,x);
dPx = polyval(dP,x);
d2Px = polyval(d2P,x);
if abs(Px) < 1e-14*polyval(abs(P),abs(x))
break % if value is zero in relative accuracy
end
G = dPx/Px;
H=G^2 - d2Px / Px;
D1= (G+sqrt((n-1)*(n*H-G^2)));
D2= (G-sqrt((n-1)*(n*H-G^2)));
D = D1;
if abs(D2)>abs(D1) D=D2; end % select the larger denominator
a=n/D;
x=x-a;
fprintf("x(%d) = %.15f%+.15fi, |dx|=%8.5g\n",k,real(x),imag(x), abs(a));
if abs(a) < err*(err+abs(x))
break
end
end
y = polyval(P0,x); % check polynomial value of the original polynomial
fprintf("root found x=%.15f%+.15fi with value P0(x)=%.6g%+.6gi\n", real(x),imag(x),real(y),imag(y));
disp("Deflation");
[ P,R ] = deconv(P,[1,-x]); % division with remainder
x = conj(x); % shortcut for conjugate pairs and clustered roots
end

Matlab : Confusion regarding unit of entropy to use in an example

Figure 1. Hypothesis plot. y axis: Mean entropy. x axis: Bits.
This Question is in continuation to a previous one asked Matlab : Plot of entropy vs digitized code length
I want to calculate the entropy of a random variable that is discretized version (0/1) of a continuous random variable x. The random variable denotes the state of a nonlinear dynamical system called as the Tent Map. Iterations of the Tent Map yields a time series of length N.
The code should exit as soon as the entropy of the discretized time series becomes equal to the entropy of the dynamical system. It is known theoretically that the entropy of the system, H is log_e(2) or ln(2) = 0.69 approx. The objective of the code is to find number of iterations, j needed to produce the same entropy as the entropy of the system, H.
Problem 1: My problem in when I calculate the entropy of the binary time series which is the information message, then should I be doing it in the same base as H? OR Should I convert the value of H to bits because the information message is in 0/1 ? Both give different results i.e., different values of j.
Problem 2: It can happen that the probality of 0's or 1's can become zero so entropy correspondng to it can become infinity. To prevent this, I thought of putting a check using if-else. But, the loop
if entropy(:,j)==NaN
entropy(:,j)=0;
end
does not seem to be working. Shall be greateful for ideas and help to solve this problem. Thank you
UPDATE : I implemented the suggestions and answers to correct the code. However, my logic of solving was not proper earlier. In the revised code, I want to calculate the entropy for length of time series having bits 2,8,16,32. For each code length, entropy is calculated. Entropy calculation for each code length is repeated N times starting for each different initial condition of the dynamical system. This appraoch is adopted to check at which code length the entropy becomes 1. The nature of the plot of entropy vs bits should be increasing from zero and gradually reaching close to 1 after which it saturates - remains constant for all the remaining bits. I am unable to get this curve (Figure 1). Shall appreciate help in correcting where I am going wrong.
clear all
H = 1 %in bits
Bits = [2,8,16,32,64];
threshold = 0.5;
N=100; %Number of runs of the experiment
for r = 1:length(Bits)
t = Bits(r)
for Runs = 1:N
x(1) = rand;
for j = 2:t
% Iterating over the Tent Map
if x(j - 1) < 0.5
x(j) = 2 * x(j - 1);
else
x(j) = 2 * (1 - x(j - 1));
end % if
end
%Binarizing the output of the Tent Map
s = (x >=threshold);
p1 = sum(s == 1 ) / length(s); %calculating probaility of number of 1's
p0 = 1 - p1; % calculating probability of number of 0'1
entropy(t) = -p1 * log2(p1) - (1 - p1) * log2(1 - p1); %calculating entropy in bits
if isnan(entropy(t))
entropy(t) = 0;
end
%disp(abs(lambda-H))
end
Entropy_Run(Runs) = entropy(t)
end
Entropy_Bits(r) = mean(Entropy_Run)
plot(Bits,Entropy_Bits)
For problem 1, H and entropy can be in either nats or bits units, so long as they are both computed using the same units. In other words, you should use either log for both or log2 for both. With the code sample you provided, H and entropy are correctly calculated using consistant nats units. If you prefer to work in units of bits, the conversion of H should give you H = log(2)/log(2) = 1 (or using the conversion factor 1/log(2) ~ 1.443, H ~ 0.69 * 1.443 ~ 1).
For problem 2, as #noumenal already pointed out you can check for NaN using isnan. Alternatively you could check if p1 is within (0,1) (excluding 0 and 1) with:
if (p1 > 0 && p1 < 1)
entropy(:,j) = -p1 * log(p1) - (1 - p1) * log(1 - p1); %calculating entropy in natural base e
else
entropy(:, j) = 0;
end
First you just
function [mean_entropy, bits] = compute_entropy(bits, blocks, threshold, replicate)
if replicate
disp('Replication is ON');
else
disp('Replication is OFF');
end
%%
% Populate random vector
if replicate
seed = 849;
rng(seed);
else
rng('default');
end
rs = rand(blocks);
%%
% Get random
trial_entropy = zeros(length(bits));
for r = 1:length(rs)
bit_entropy = zeros(length(bits), 1); % H
% Traverse bit trials
for b = 1:(length(bits)) % N
tent_map = zeros(b, 1); %Preallocate for memory management
%Initialize
tent_map(1) = rs(r);
for j = 2:b % j is the iterator, b is the current bit
if tent_map(j - 1) < threshold
tent_map(j) = 2 * tent_map(j - 1);
else
tent_map(j) = 2 * (1 - tent_map(j - 1));
end % if
end
%Binarize the output of the Tent Map
s = find(tent_map >= threshold);
p1 = sum(s == 1) / length(s); %calculate probaility of number of 1's
%p0 = 1 - p1; % calculate probability of number of 0'1
bit_entropy(b) = -p1 * log2(p1) - (1 - p1) * log2(1 - p1); %calculate entropy in bits
if isnan(bit_entropy(b))
bit_entropy(b) = 0;
end
%disp(abs(lambda-h))
end
trial_entropy(:, r) = bit_entropy;
disp('Trial Statistics')
data = get_summary(bit_entropy);
disp('Mean')
disp(data.mean);
disp('SD')
disp(data.sd);
end
% TO DO Compute the mean for each BIT index in trial_entropy
mean_entropy = 0;
disp('Overall Statistics')
data = get_summary(trial_entropy);
disp('Mean')
disp(data.mean);
disp('SD')
disp(data.sd);
%This is the wrong mean...
mean_entropy = data.mean;
function summary = get_summary(entropy)
summary = struct('mean', mean(entropy), 'sd', std(entropy));
end
end
and then you just have to
% Entropy Script
clear all
%% Settings
replicate = false; % = false % Use true for debugging only.
%H = 1; %in bits
Bits = 2.^(1:6);
Threshold = 0.5;
%Tolerance = 0.001;
Blocks = 100; %Number of runs of the experiment
%% Run
[mean_entropy, bits] = compute_entropy(Bits, Blocks, Threshold, replicate);
%What we want
%plot(bits, mean_entropy);
%What we have
plot(1:length(mean_entropy), mean_entropy);

Matlab/CUDA: ocean wave simulation

I've studied "Simulating Ocean Water" article by Jerry Tessendorf and tried to program the Statistical Wave Model but I didn't get correct result and I don't understand why.
In my program I tried only to create a wave height field at time t = 0 without any further changes in time. After execution of my program I got not what I was expecting:
Here's my source code:
clear all; close all; clc;
rng(11); % setting seed for random numbers
meshSize = 64; % field size
windDir = [1, 0]; % ||windDir|| = 1
patchSize = 64;
A = 1e+4;
g = 9.81; % gravitational constant
windSpeed = 1e+2;
x1 = linspace(-10, 10, meshSize+1); x = x1(1:meshSize);
y1 = linspace(-10, 10, meshSize+1); y = y1(1:meshSize);
[X,Y] = meshgrid(x, y);
H0 = zeros(size(X)); % height field at time t = 0
for i = 1:meshSize
for j = 1:meshSize
kx = 2.0 * pi / patchSize * (-meshSize / 2.0 + x(i)); % = 2*pi*n / Lx
ky = 2.0 * pi / patchSize * (-meshSize / 2.0 + y(j)); % = 2*pi*m / Ly
P = phillips(kx, ky, windDir, windSpeed, A, g); % phillips spectrum
H0(i,j) = 1/sqrt(2) * (randn(1) + 1i * randn(1)) * sqrt(P);
end
end
H0 = H0 + conj(H0);
surf(X,Y,abs(ifft(H0)));
axis([-10 10 -10 10 -10 10]);
And the phillips function:
function P = phillips(kx, ky, windDir, windSpeed, A, g)
k_sq = kx^2 + ky^2;
L = windSpeed^2 / g;
k = [kx, ky] / sqrt(k_sq);
wk = k(1) * windDir(1) + k(2) * windDir(2);
P = A / k_sq^2 * exp(-1.0 / (k_sq * L^2)) * wk^2;
end
Is there any matlab ocean simulation source code which could help me to understand my mistakes? Fast google search didn't get any results.
Here's a "correct" result I got from "CUDA FFT Ocean Simulation". I didn't achieve this behavior in Matlab yet but I've ploted "surf" in matlab using data from "CUDA FFT Ocean Simulation". Here's what it looks like:
I've made an experiment and got an interesting result:
I've taken generated h0 from "CUDA FFT Ocean Simulation". So I have to do ifft to transform from frequency domain to spatial domain to plot the graph. I've done it for the same h0 using matlab ifft and using cufftExecC2C from CUDA library. Here's the result:
CUDA ifft:
Matlab ifft:
Either I don't understand some aspects of realization of cufftExecC2C or cufftExecC2C and matlab ifft are different algorithms with different results.
By the way parameters for generating such surface are:
meshSize = 32
A = 1e-7
patchSize = 80
windSpeed = 10
Well that was definitely a funny exercise. This is a completely rewritten answer since you found the issues you were asking about by yourself.
Instead of deleting my answer, there is still merit in posting to help you vectorize and/or explain a few bits of code.
I completely rewrote the GUI I gave in my former answer in order to incorporate your changes and add a couple of options. It started to grew arms and legs so I won't put the listing here but you can find the full file there:
ocean_simulator.m.
This is completely self contained and it includes all the calculating functions I vectorized and list separately below.
The GUI will allow you to play with the parameters, animate the waves, export GIF file (and a few other options like the "preset", but they are not too ironed out yet). A few examples of what you can achieve:
Basic
This is what you get with the quick default settings, and a couple of rendering options. This uses a small grid size and a fast time step, so it runs pretty quickly on any machine.
I am quite limited at home (Pentium E2200 32bit), so I could only practice with limited settings. The gui will run even with the settings maxed but it will become to slow to really enjoy.
However, with a quick run of ocean_simulator at work (I7 64 bit, 8 cores, 16GB ram, 2xSSD in Raid), it makes it much more fun! Here are a few examples:
Although done on a much better machine, I didn't use any parallel functionality nor any GPU calculations, so Matlab was only using a portion of these specs, which means it could probably run just as good on any 64bit system with decent RAM
Windy lake
This is a rather flat water surface like a lake. Even high winds do not produce high amplitude waves (but still a lot of mini wavelets). If you're a wind surfer looking at that from your window on top of the hill, your heart is going to skip a beat and your next move is to call Dave "Man! gear up. Meet you in five on the water!"
Swell
This is you looking from the bridge of your boat on the morning, after having battled with the storm all night. The storm has dissipated and the long large waves are the last witness of what was definitely a shaky night (people with sailing experience will know ...).
T-Storm
And this was what you were up to the night before...
second gif done at home, hence the lack of detail ... sorry
To the bottom:
Finally, the gui will let you add a patch around the water domain. In the gui it is transparent so you could add objects underwater or a nice ocean bottom. Unfortunately, the GIF format cannot include an alpha channel so no transparency here (but if you export in a video then you should be ok).
Moreover, the export to GIF degrade the image, the joint between the domain border and the water surface is flawless if you run that in Matlab. In some case it also make Matlab degrade the rendering of the lighting, so this is definitely not the best option for export, but it allows more things to play within matlab.
Now onto the code:
Instead of listing the full GUI, which would be super long (this post is long enough already), I will just list here the re-written version of your code, and explain the changes.
You should notice a massive increase of speed execution (orders of magnitude), thanks to the remaining vectorization, but mostly for two reasons:
(i) A lot of calculations were repeated. Caching values and reusing them is much faster than recalculating full matrices in loops (during the animation part).
(ii) Note how I defined the surface graphic object. It is defined only once (empty even), then all the further calls (in the loop) only update the underlying ZData of the surface object (instead of re-creating a surface object at each iteration.
Here goes:
%% // clear workspace
clear all; close all; clc;
%% // Default parameters
param.meshsize = 128 ; %// main grid size
param.patchsize = 200 ;
param.windSpeed = 100 ; %// what unit ? [m/s] ??
param.winddir = 90 ; %// Azimuth
param.rng = 13 ; %// setting seed for random numbers
param.A = 1e-7 ; %// Scaling factor
param.g = 9.81 ; %// gravitational constant
param.xLim = [-10 10] ; %// domain limits X
param.yLim = [-10 10] ; %// domain limits Y
param.zLim = [-1e-4 1e-4]*2 ;
gridSize = param.meshsize * [1 1] ;
%% // Define the grid X-Y domain
x = linspace( param.xLim(1) , param.xLim(2) , param.meshsize ) ;
y = linspace( param.yLim(1) , param.yLim(2) , param.meshsize ) ;
[X,Y] = meshgrid(x, y);
%% // get the grid parameters which remain constants (not time dependent)
[H0, W, Grid_Sign] = initialize_wave( param ) ;
%% // calculate wave at t0
t0 = 0 ;
Z = calc_wave( H0 , W , t0 , Grid_Sign ) ;
%% // populate the display panel
h.fig = figure('Color','w') ;
h.ax = handle(axes) ; %// create an empty axes that fills the figure
h.surf = handle( surf( NaN(2) ) ) ; %// create an empty "surface" object
%% // Display the initial wave surface
set( h.surf , 'XData',X , 'YData',Y , 'ZData',Z )
set( h.ax , 'XLim',param.xLim , 'YLim',param.yLim , 'ZLim',param.zLim )
%% // Change some rendering options
axis off %// make the axis grid and border invisible
shading interp %// improve shading (remove "faceted" effect)
blue = linspace(0.4, 1.0, 25).' ; cmap = [blue*0, blue*0, blue]; %'// create blue colormap
colormap(cmap)
%// configure lighting
h.light_handle = lightangle(-45,30) ; %// add a light source
set(h.surf,'FaceLighting','phong','AmbientStrength',.3,'DiffuseStrength',.8,'SpecularStrength',.9,'SpecularExponent',25,'BackFaceLighting','unlit')
%% // Animate
view(75,55) %// no need to reset the view inside the loop ;)
timeStep = 1./25 ;
nSteps = 2000 ;
for time = (1:nSteps)*timeStep
%// update wave surface
Z = calc_wave( H0,W,time,Grid_Sign ) ;
h.surf.ZData = Z ;
pause(0.001);
end
%% // This block of code is only if you want to generate a GIF file
%// be carefull on how many frames you put there, the size of the GIF can
%// quickly grow out of proportion ;)
nFrame = 55 ;
gifFileName = 'MyDancingWaves.gif' ;
view(-70,40)
clear im
f = getframe;
[im,map] = rgb2ind(f.cdata,256,'nodither');
im(1,1,1,20) = 0;
iframe = 0 ;
for time = (1:nFrame)*.5
%// update wave surface
Z = calc_wave( H0,W,time,Grid_Sign ) ;
h.surf.ZData = Z ;
pause(0.001);
f = getframe;
iframe= iframe+1 ;
im(:,:,1,iframe) = rgb2ind(f.cdata,map,'nodither');
end
imwrite(im,map,gifFileName,'DelayTime',0,'LoopCount',inf)
disp([num2str(nFrame) ' frames written in file: ' gifFileName])
You'll notice that I changed a few things, but I can assure you the calculations are exactly the same. This code calls a few subfunctions but they are all vectorized so if you want you can just copy/paste them here and run everything inline.
The first function called is initialize_wave.m
Everything calculated here will be constant later (it does not vary with time when you later animate the waves), so it made sense to put that into a block on it's own.
function [H0, W, Grid_Sign] = initialize_wave( param )
% function [H0, W, Grid_Sign] = initialize_wave( param )
%
% This function return the wave height coefficients H0 and W for the
% parameters given in input. These coefficients are constants for a given
% set of input parameters.
% Third output parameter is optional (easy to recalculate anyway)
rng(param.rng); %// setting seed for random numbers
gridSize = param.meshsize * [1 1] ;
meshLim = pi * param.meshsize / param.patchsize ;
N = linspace(-meshLim , meshLim , param.meshsize ) ;
M = linspace(-meshLim , meshLim , param.meshsize ) ;
[Kx,Ky] = meshgrid(N,M) ;
K = sqrt(Kx.^2 + Ky.^2); %// ||K||
W = sqrt(K .* param.g); %// deep water frequencies (empirical parameter)
[windx , windy] = pol2cart( deg2rad(param.winddir) , 1) ;
P = phillips(Kx, Ky, [windx , windy], param.windSpeed, param.A, param.g) ;
H0 = 1/sqrt(2) .* (randn(gridSize) + 1i .* randn(gridSize)) .* sqrt(P); % height field at time t = 0
if nargout == 3
Grid_Sign = signGrid( param.meshsize ) ;
end
Note that the initial winDir parameter is now expressed with a single scalar value representing the "azimuth" (in degrees) of the wind (anything from 0 to 360). It is later translated to its X and Y components thanks to the function pol2cart.
[windx , windy] = pol2cart( deg2rad(param.winddir) , 1) ;
This insure that the norm is always 1.
The function calls your problematic phillips.m separately, but as said before it works even fully vectorized so you can copy it back inline if you like. (don't worry I checked the results against your versions => strictly identical). Note that this function does not output complex numbers so there was no need to compare the imaginary parts.
function P = phillips(Kx, Ky, windDir, windSpeed, A, g)
%// The function now accept scalar, vector or full 2D grid matrix as input
K_sq = Kx.^2 + Ky.^2;
L = windSpeed.^2 ./ g;
k_norm = sqrt(K_sq) ;
WK = Kx./k_norm * windDir(1) + Ky./k_norm * windDir(2);
P = A ./ K_sq.^2 .* exp(-1.0 ./ (K_sq * L^2)) .* WK.^2 ;
P( K_sq==0 | WK<0 ) = 0 ;
end
The next function called by the main program is calc_wave.m. This function finishes the calculations of the wave field for a given time. It is definitely worth having that on its own because this is the mimimun set of calculations which will have to be repeated for each given time when you want to animate the waves.
function Z = calc_wave( H0,W,time,Grid_Sign )
% Z = calc_wave( H0,W,time,Grid_Sign )
%
% This function calculate the wave height based on the wave coefficients H0
% and W, for a given "time". Default time=0 if not supplied.
% Fourth output parameter is optional (easy to recalculate anyway)
% recalculate the grid sign if not supplied in input
if nargin < 4
Grid_Sign = signGrid( param.meshsize ) ;
end
% Assign time=0 if not specified in input
if nargin < 3 ; time = 0 ; end
wt = exp(1i .* W .* time ) ;
Ht = H0 .* wt + conj(rot90(H0,2)) .* conj(wt) ;
Z = real( ifft2(Ht) .* Grid_Sign ) ;
end
The last 3 lines of calculations require a bit of explanation as they received the biggest changes (all for the same result but a much better speed).
Your original line:
Ht = H0 .* exp(1i .* W .* (t * timeStep)) + conj(flip(flip(H0,1),2)) .* exp(-1i .* W .* (t * timeStep));
recalculate the same thing too many times to be efficient:
(t * timeStep) is calculated twice on the line, at each loop, while it is easy to get the proper time value for each line when time is initialised at the beginning of the loop for time = (1:nSteps)*timeStep.
Also note that exp(-1i .* W .* time) is the same than conj(exp(1i .* W .* time)). Instead of doing 2*m*n multiplications to calculate them each, it is faster to calculate one once, then use the conj() operation which is much faster.
So your single line would become:
wt = exp(1i .* W .* time ) ;
Ht = H0 .* wt + conj(flip(flip(H0,1),2)) .* conj(wt) ;
Last minor touch, flip(flip(H0,1),2)) can be replaced by rot90(H0,2) (also marginally faster).
Note that because the function calc_wave is going to be repeated extensively, it is definitely worth reducing the number of calculations (as we did above), but also by sending it the Grid_Sign parameter (instead of letting the function recalculate it every iteration). This is why:
Your mysterious function signCor(ifft2(Ht),meshSize)), simply reverse the sign of every other element of Ht. There is a faster way of achieving that: simply multiply Ht by a matrix the same size (Grid_Sign) which is a matrix of alternated +1 -1 ... and so on.
so signCor(ifft2(Ht),meshSize) becomes ifft2(Ht) .* Grid_Sign.
Since Grid_Sign is only dependent on the matrix size, it does not change for each time in the loop, you only calculate it once (before the loop) then use it as it is for every other iteration. It is calculated as follow (vectorized, so you can also put it inline in your code):
function sgn = signGrid(n)
% return a matrix the size of n with alternate sign for every indice
% ex: sgn = signGrid(3) ;
% sgn =
% -1 1 -1
% 1 -1 1
% -1 1 -1
[x,y] = meshgrid(1:n,1:n) ;
sgn = ones( n ) ;
sgn(mod(x+y,2)==0) = -1 ;
end
Lastly, you will notice a difference in how the grids [Kx,Ky] are defined between your version and this one. They do produce slightly different result, it's just a matter of choice.
To explain with a simple example, let's consider a small meshsize=5. Your way of doing things will split that into 5 values, equally spaced, like so:
Kx(first line)=[-1.5 -0.5 0.5 1.5 2.5] * 2 * pi / patchSize
while my way of producing the grid will produce equally spaced values, but also centered on the domain limits, like so:
Kx(first line)=[-2.50 -1.25 0.0 1.25 2.50] * 2 * pi / patchSize
It seems to respect more your comment % = 2*pi*n / Lx, -N/2 <= n < N/2 on the line where you define it.
I tend to prefer symmetric solutions (plus it is also slightly faster but it is only calculated once so it is not a big deal), so I used my vectorized way, but it is purely a matter of choice, you can definitely keep your way, it only ever so slightly "offset" the whole result matrix, but it doesn't perturbate the calculations per se.
last remains of the first answer
Side programming notes:
I detect you come from the C/C++ world or family. In Matlab you do not need to define decimal number with a coma (like 2.0, you used that for most of your numbers). Unless specifically defined otherwise, Matlab by default cast any number to double, which is a 64 bit floating point type. So writing 2 * pi is enough to get the maximum precision (Matlab won't cast pi as an integer ;-)), you do not need to write 2.0 * pi. Although it will still work if you don't want to change your habits.
Also, (one of the great benefit of Matlab), adding . before an operator usually mean "element-wise" operation. You can add (.+), substract (.-), multiply (.*), divide (./) full matrix element wise this way. This is how I got rid of all the loops in your code. This also work for the power operator: A.^2 will return a matrix the same size as A with every element squared.
Here's the working program.
First of all - source code:
clear all; close all; clc;
rng(13); % setting seed for random numbers
meshSize = 128; % field size
windDir = [0.1,1];
patchSize = 200;
A = 1e-7;
g = 9.81; % gravitational constant
windSpeed = 100;
timeStep = 1/25;
x1 = linspace(-10, 10, meshSize+1); x = x1(1:meshSize);
y1 = linspace(-10, 10, meshSize+1); y = y1(1:meshSize);
[X,Y] = meshgrid(x,y); % wave field
i = 1:meshSize; j = 1:meshSize; % indecies
[I,J] = meshgrid(i,j); % field of indecies
Kx = 2.0 * pi / patchSize * (-meshSize / 2.0 + I); % = 2*pi*n / Lx, -N/2 <= n < N/2
Ky = 2.0 * pi / patchSize * (-meshSize / 2.0 + J); % = 2*pi*m / Ly, -M/2 <= m < M/2
K = sqrt(Kx.^2 + Ky.^2); % ||K||
W = sqrt(K .* g); % deep water frequencies (empirical parameter)
P = zeros(size(X)); % Cant compute P without loops
for i = 1:meshSize
for j = 1:meshSize
P(i,j) = phillips(Kx(i,j), Ky(i,j), windDir, windSpeed, A, g); % phillips spectrum
end
end
H0 = 1/sqrt(2) .* (randn(size(X)) + 1i .* randn(size(X))) .* sqrt(P); % height field at time t = 0
rotate3d on;
for t = 1:10000 % 10000 * timeStep (sec)
Ht = H0 .* exp(1i .* W .* (t * timeStep)) + ...
conj(flip(flip(H0,1),2)) .* exp(-1i .* W .* (t * timeStep));
[az,el] = view;
surf(X,Y,real(signCor(ifft2(Ht),meshSize)));
axis([-10 10 -10 10 -1e-4 1e-4]); view(az,el);
blue = linspace(0.4, 1.0, 25)'; map = [blue*0, blue*0, blue];
%shading interp; % improve shading (remove "faceted" effect)
colormap(map);
pause(1/60);
end
phillips.m: (I've tried to vectorize the computation of Phillips spectrum but I faced with a difficulty which I'll show further)
function P = phillips(kx, ky, windDir, windSpeed, A, g)
k_sq = kx^2 + ky^2;
if k_sq == 0
P = 0;
else
L = windSpeed^2 / g;
k = [kx, ky] / sqrt(k_sq);
wk = k(1) * windDir(1) + k(2) * windDir(2);
P = A / k_sq^2 * exp(-1.0 / (k_sq * L^2)) * wk^2;
if wk < 0
P = 0;
end
end
end
signCor.m: (This function is an absolutely mystery for me... I've copied it from "CUDA FFT Ocean Simulation" realization. Simulation works much worse without it. And again I don't know how to vectorize this function.)
function H = signCor(H1, meshSize)
H = H1;
for i = 1:meshSize
for j = 1:meshSize
if mod(i+j,2) == 0
sign = -1; % works fine if we change signs vice versa
else
sign = 1;
end
H(i,j) = H1(i,j) * sign;
end
end
end
The biggest mistake that I've done is that I used ifft instead of using ifft2, that's why CUDA ifft and Matlab ifft didn't match.
My second mistake was in this lines of code:
kx = 2.0 * pi / patchSize * (-meshSize / 2.0 + x(i)); % = 2*pi*n / Lx
ky = 2.0 * pi / patchSize * (-meshSize / 2.0 + y(j)); % = 2*pi*m / Ly
I should've write:
kx = 2.0 * pi / patchSize * (-meshSize / 2.0 + i); % = 2*pi*n / Lx
ky = 2.0 * pi / patchSize * (-meshSize / 2.0 + j); % = 2*pi*m / Ly
I've played a bit with parameters A, meshSize, patchSize and I came to the conclusion that:
Somehow plausible parameter of wave amplitude is A * (patchSize / meshSize), where A is nothing but a scaling factor.
For 'calm' patchSize / meshSize <= 0.5.
For 'tsunami' patchSize / meshSize >= 3.0.
Difficulty with a vectorization of Phillips spectrum:
I have 2 functions:
% non-vectorized spectrum
function P = phillips1(kx, ky, windDir, windSpeed, A, g)
k_sq = kx^2 + ky^2;
if k_sq == 0
P = 0;
else
L = windSpeed^2 / g;
k = [kx, ky] / sqrt(k_sq);
wk = k(1) * windDir(1) + k(2) * windDir(2);
P = A / k_sq^2 * exp(-1.0 / (k_sq * L^2)) * wk^2;
if wk < 0
P = 0;
end
end
end
% vectorized spectrum
function P = phillips2(Kx, Ky, windDir, windSpeed, A, g)
K_sq = Kx .^ 2 + Ky .^ 2;
L = -g^2 / windSpeed^4;
WK = (Kx ./ K_sq) .* windDir(1) + (Ky ./ K_sq) .* windDir(2);
P = (A ./ (K_sq .^ 2)) .* ( exp(L ./ K_sq) .* (WK .^ 2) );
P(K_sq == 0) = 0;
P(WK < 0) = 0;
P(isinf(P)) = 0;
end
After I compute P1 using phillips1 and P2 using phillips2 I plot their difference:
subplot(2,1,1); surf(X,Y,real(P2-P1)); title('Difference in real part');
subplot(2,1,2); surf(X,Y,imag(P2-P1)); title('Difference in imaginary part');
It perfectly illustrates that there's a huge difference between this 2 spectrums in real part.

MatLab - How to accept a tolerance when comparing two float numbers

I'm trying to make a function to compute an integral using Composite trapezoidal rule in numerical methods. But the thing is, when I'm going to check whether the input data points are equally spaced, There is a error. Because of the floating point numbers.
Here's my code
function answer = composite_trapezoidal (X, Y)
lx = length(X);
ly = length(Y);
h = X(2) - X(1);
validity = 1;
series_sum = 0;
answer = 0;
if (lx ~= ly)
fprintf('Error ! Dimensions Of Data Point Vectors Doesn''t Match\n');
else
for i = 1:lx - 1
hTmp = X(i + 1) - X(i);
if (hTmp ~= h)
validity = 0;
fprintf('Invalid Data Points. Data Must Be Equally Spaced !\n');
break;
end
end
end
if (validity == 1)
for i = 2:lx - 1
series_sum = series_sum + Y(i);
end
answer = (h / 2) * (2 * series_sum + Y(1) + Y(ly));
end
consider the input x = linspace(0, 2, 7);
Then the function terminates with "data points are not equally spaced". But the thing is they were computed using linspace.
I can understand the problem. Points are 0, 0.3333333, 0.6666667, etc. So they aren't equally spaced when rounding up. But the problem is Can we fix this ?
Checking equality with rounded numbers is usually unstable.
You could try using an acceptable tolerance such as abs(hTmp-h)< 10^-4 or even better use a relative tolerance with abs(hTmp-h)/abs(hTmp) < 10^-2
Consider using a tolerance in your comparison, because floating operations are exact within some accuracy (see this page). Typically use eps for that, it is common to use a muliple of this value for tolerance.

MatLab: Matrix with one peak and rest decreasing

I'm trying to create a matrix such that if I define a random number between 0 and 1 and a random location in the matrix, I want all the values around that to "diffuse" out. Here's sort of an example:
0.214 0.432 0.531 0.631 0.593 0.642
0.389 0.467 0.587 0.723 0.654 0.689
0.421 0.523 0.743 0.812 0.765 0.754
0.543 0.612 0.732 0.843 0.889 0.743
0.322 0.543 0.661 0.732 0.643 0.694
0.221 0.321 0.492 0.643 0.521 0.598
if you notice, there's a peak at (4,5) = 0.889 and all the other numbers decrease as they move away from that peak.
I can't figure out a nice way to generate a code that does this. Any thoughts? I need to be able to generate this type of matrix with random peaks and a random rate of decrease...
Without knowing what other constraints you want to implement:
Come up with a function z = f(x,y) whose peak value is at (x0,y0) == (0,0) and whose values range between [0,1]. As an example, the PDF for the Normal distribution with mu = 0 and sigma = 1/sqrt(2*pi) has a peak at x == 0 of 1.0, and whose lower bound is zero. Similarly, a bivariate normal PDF with mu = {0,0} and determinate(sigma) == [1/(2*pi)]^2 will have similar characteristics.
Any mathematical function may have its domain shifted: f(x-x0, y-y0)
Your code will look something like this:
someFunction = #(x,y) theFunctionYouPicked(x,y);
[x0,y0,peak] = %{ you supply these values %};
myFunction = #(x,y) peak * someFunction(x - x0, y - y0);
[dimX,dimY] = %{ you supply these values %};
mymatrix = bsxfun( myFunction, 0:dimX, (0:dimY)' );
You can read more about bsxfun here; however, here's an example of how it works:
bsxfun( blah, [a b c], [d e f]' )
That should give the following matrix (or its transpose ... I don't have matlab in front of me):
[blah(a,d) blah(a,e) blah(a,f);
blah(b,d) blah(b,e) blah(b,f);
blah(c,d) blah(c,e) blah(c,f)]
Get a toy example working, then you can tinker with it to be more flexible. If the function dictating how it decreases is random (with the constraint that points closer to (x0,y0) are larger than more distant points), it won't be an issue to make a procedural function instead of using strictly mathematical ones.
In response to your answer:
Your equation could be thought of as a model for gravity where an object instantaneously induces a force on another mass, then stops exerting force. Following that logic, it could be modified to a naive vector formulation like this:
% v1 & v2 are vectors that point from the two peak points to the point [ii,jj]
theMatrix(ii,jj) = norm( (r1 / norm( v1 )) * v1 / norm( v1 ) ...
+ (r2 / norm( v2 )) * v2 / norm( v2 ) ...
);
The most extreme type of corner case you'll run into is one where v1 & v2 point in the same direction as in the following row:
[ . . A X1 X2 . . ]
... where you want a value for A w/respect to X1 & X2. Using the above expression it'll boil down to A = X1 / norm(v1) + X2 / norm(v2), which will definitely exceed the peak value at X1 because norm(v1) == 1. You could certainly do some dirty stuff to Band-Aid it, but personally I'd start looking for a different function.
Along those lines, if you used Newton's Law of Universal Gravitation with a few modifications:
You wouldn't need an analogue for G, so you could just assume G == 1
Treat each of the points in the matrix as having mass m2 == 1, so the equation reduces to: F_12 == -1 * (m1 / r^2) * RHAT_12
Sum the "force" vectors and calculate the norm to get each value
... you'll still run into the same problem. The corner case I laid out above would boil down to A = X1/norm(v1)^2 + X2/norm(v2)^2 == X1 + X2/4. Since it's inversely proportional to the square of the distances, it'd be easier to Band-Aid than the linear one, but I wouldn't recommend it.
Similarly, if you use polynomials it won't scale well; you can design one that won't ever exceed your chosen peaks, but there wouldn't be a lower bound.
You could use the logistic function to help with this:
1 / (1 + E^(-c*x))
Here's an example of using the logistic function on a degree 4 polynomial with peaks at points 2 & 4; you'll note I gave the polynomial a scaling factor to pull the polynomial down to relatively small values so calculated values aren't so close together.
I ended up creating a code that wraps the way I want based on a dimension, which I provide. Here's the code:
dims = 100;
A = zeros(dims);
b = floor(1+dims*rand(1));
c = floor(1+dims*rand(1));
d = rand(1);
x1 = c;
y1 = b;
A(x1,y1) = d;
for i = 1:dims
for j = i
k = 1-j;
while k <= j
if x1-j>0 && y1+k>0 && y1+k <= dims
if A(x1-j,y1+k) == 0
A(x1-j,y1+k) = eqn(d,x1-j,y1+k,x1,y1);
end
end
k = k+1;
end
end
for k = i
j = 1-k;
while j<=k
if x1+j>0 && y1+k>0 && y1+k <= dims && x1+j <= dims
if A(x1+j,y1+k)==0
A(x1+j, y1+k) = eqn(d,x1+j,y1+k,x1,y1);
end
end
j = j+1;
end
end
for j = i
k = 1-j;
while k<=j
if x1+j>0 && y1-k>0 && x1+j <= dims && y1-k<= dims
if A(x1+j,y1-k) == 0
A(x1+j,y1-k) = eqn(d,x1+j,y1-k,x1,y1);
end
end
k=k+1;
end
end
for k = i
j = 1-k;
while j<=k
if x1-j>0 && y1-k>0 && x1-j <= dims && y1-k<= dims
if A(x1-j,y1-k)==0
A(x1-j,y1-k) = eqn(d,x1-j,y1-k,x1,y1);
end
end
j = j+1;
end
end
end
colormap('hot');
imagesc(A);
colorbar;
If you notice, the code calls a function (I called it eqn), which provided the information for how to changes the values in each cell. The function that I settled on is d/distance (distance being computed using the standard distance formula).
It seems to work pretty well. I'm now just trying to develop a good way to have multiple peaks in the same square without one peak completely overwriting the other.