Swift: Protocol Based Type Construction - swift

I'm trying to create a protocol in Swift I can use for object construction. The problem I'm running into is that I need to store the type information so the type can be constructed later and returned in a callback. I can't seem to find a way to store it without either crashing the compiler or creating build errors. Here's the basics (a contrived, but working example):
protocol Model {
init(values: [String])
func printValues()
}
struct Request<T:Model> {
let returnType:T.Type
let callback:T -> ()
}
We have a simple protocol that declares a init (for construction) and another func printValues() (for testing). We also define a struct we can use to store the type information and a callback to return the new type when its constructed.
Next we create a constructor:
class Constructor {
var callbacks: [Request<Model>] = []
func construct<T:Model>(type:T.Type, callback: T -> ()) {
callback(type(values: ["value1", "value2"]))
}
func queueRequest<T:Model>(request: Request<T>) {
callbacks.append(request)
}
func next() {
if let request = callbacks.first {
let model = request.returnType(values: ["value1", "value2"])
request.callback(model)
}
}
}
A couple things to note: This causes a compiler crash. It can't figure this out for some reason. The problem appears to be var callbacks: [Request<Model>] = []. If I comment out everything else, the compiler still crashes. Commenting out the var callbacks and the compiler stops crashing.
Also, the func construct works fine. But it doesn't store the type information so it's not so useful to me. I put in there for demonstration.
I found I could prevent the compiler from crashing if I remove the protocol requirement from the Request struct: struct Request<T>. In this case everything works and compiles but I still need to comment out let model = request.returnType(values: ["value1", "value2"]) in func next(). That is also causing a compiler crash.
Here's a usage example:
func construct() {
let constructor = Constructor()
let request = Request(returnType: TypeA.self) { req in req.printValues() }
//This works fine
constructor.construct(TypeA.self) { a in
a.printValues()
}
//This is what I want
constructor.queueRequest(request)
constructor.next() //The callback in the request object should be called and the values should print
}
Does anyone know how I can store type information restricted to a specific protocol to the type can later be constructed dynamically and returned in a callback?

If you want the exact same behavior of next I would suggest to do this:
class Constructor {
// store closures
var callbacks: [[String] -> ()] = []
func construct<T:Model>(type:T.Type, callback: T -> ()) {
callback(type(values: ["value1", "value2"]))
}
func queueRequest<T:Model>(request: Request<T>) {
// some code from the next function so you don't need to store the generic type itself
// **EDIT** changed closure to type [String] -> () in order to call it with different values
callbacks.append({ values in
let model = request.returnType(values: values)
request.callback(model)
})
}
func next(values: [String]) {
callbacks.first?(values)
}
}
Now you can call next with your values. Hopefully this works for you.
EDIT: Made some changes to the closure type and the next function

Unfortunately there is no way to save specific generic types in an array and dynamically call their methods because Swift is a static typed language (and Array has to have unambiguous types).
But hopefully we can express something like this in the future like so:
var callbacks: [Request<T: Model>] = []
Where T could be anything but has to conform to Model for example.

Your queueRequest method shouldn't have to know the generic type the Request it's being passed. Since callbacks is an array of Request<Model> types, the method just needs to know that the request being queued is of the type Request<Model>. It doesn't matter what the generic type is.
This code builds for me in a Playground:
class Constructor {
var callbacks: [Request<Model>] = []
func construct<T:Model>(type:T.Type, callback: T -> ()) {
callback(type(values: ["value1", "value2"]))
}
func queueRequest(request: Request<Model>) {
callbacks.append(request)
}
func next() {
if let request = callbacks.first {
let model = request.returnType(values: ["value1", "value2"])
request.callback(model)
}
}
}

So I found an answer that seems to do exactly what I want. I haven't confirmed this works yet in live code, but it does compile without any errors. Turns out, I needed to add one more level of redirection:
I create another protocol explicitly for object construction:
protocol ModelConstructor {
func constructWith(values:[String])
}
In my Request struct, I conform to this protocol:
struct Request<T:Model> : ModelConstructor {
let returnType:T.Type
let callback:T -> ()
func constructWith(values:[String]) {
let model = returnType(values: values)
callback(model)
}
}
Notice the actual construction is moved into the Request struct. Technically, the Constructor is no longer constructing, but for now I leave its name alone. I can now store the Request struct as ModelConstructor and correctly queue Requests:
class Constructor {
var callbacks: [ModelConstructor] = []
func queueRequest(request: Request<Model>) {
queueRequest(request)
}
func queueRequest(request: ModelConstructor) {
callbacks.append(request)
}
func next() {
if let request = callbacks.first {
request.constructWith(["value1", "value2"])
callbacks.removeAtIndex(0)
}
}
}
Note something special here: I can now successfully "queue" (or store in an array) Request<Model>, but I must do so indirectly by calling queueRequest(request: ModelConstructor). In this case, I'm overloading but that's not necessary. What matters here is that if I try to call callbacks.append(request) in the queueRequest(request: Request<Model>) function, the Swift compiler crashes. Apparently we need to hold the compiler's hand here a little so it can understand what exactly we want.
What I've found is that you cannot separate Type information from Type Construction. It needs to be all in the same place (in this case it's the Request struct). But so long as you keep construction coupled with the Type information, you're free to delay/store the construction until you have the information you need to actually construct the object.

Related

Extension with a generic where clause is not beeing called

The following code works just as expected:
protocol Storeable {
associatedtype Value
func create(value: Value)
}
struct DefaultStore<V>: Storeable {
typealias Value = V
func create(value: V) {
print("base impl. is called with value type: \(String(describing: V.self))")
}
}
class Event {
var title: String = ""
init(title: String) {
self.title = title
}
}
extension DefaultStore where Value: Event {
func create(value: V) {
print("event impl. is called with event: \(value.title)")
}
}
DefaultStore().create(value: Event(title: "Dance Party"))
// prints "event impl. is called with event: Dance Party"
DefaultStore().create(value: "a string object")
// prints "base impl. is called with value of type: String"
Basically I call a function on the generic class DefaultStore and the compiler calls the correct implementation depending on the underlying type.
Now I have a scenario where I want the exact same thing except, that it is wrapped in another object called Wrapper:
struct Wrapper<StoreType: Storeable,ValueType> where StoreType.Value == ValueType {
let store: StoreType
func create(value: ValueType) {
store.create(value: value)
}
}
let defaultStore = DefaultStore<Event>()
let wrapper = Wrapper(store: defaultStore)
wrapper.create(value: Event(title: "Düsseldorfer Symphoniker"))
// prints: "base impl. is called with value of type: Event"
Here I expect that the extension for Event is called but instead the base implementation is called. Anyone any idea what I am doing wrong?
--
Update:
#matt was guessing that there might be a compile time issue: "without the wrapper when you say DefaultStore().create... the Event info can be read all the way back to the DefaultStore generic parameterized type. But in your wrapper the DefaultStore is created first so it is the general type and that's all it is."
I believe that is not the case because you can also create the DefaultsStore first and it's still working without the Wrapper. Also the compiler warns me if the types don't match.
Nothing to do with "wrappers".
You seem to think that a where extension on a generic struct is a kind of substitute for some sort of dynamic dispatch, i.e. we're going to wait until runtime, look to see what kind of object the parameter to create really is, and dispatch accordingly. That's not how it works. Everything has to be resolved at compile time. At compile time, what we know is that you are not calling create with an Event — you are calling it with a ValueType. So it passes into the create with generic V.
So, for example:
struct Wrapper {
let store: DefaultStore<Event>
func create(value: Event) {
store.create(value: value)
}
}
That works the way you have in mind because we are exposing the fact that this is an Event as far as the DefaultStore is concerned at the point of calling create.
That's just a guess at what your confusion is.
Another possibility is you might imagine that the generic resolution of ValueType somehow "leaks" up to the resolution of V, but that's not true either.
Yet another possibility is you might suppose that a DefaultStore<Event> is a subtype of DefaultStore<Storable> or similar, as if there were dynamic dispatch for parameterized types, but that is exactly what is not the case. Everything has to be known completely at compile time at the call site.

How can I use a protocol's type in method signature?

I have a function like this:
// A generic function that can fetch values from the store given a type
// Corresponds to a table and it's rows
func fetch<T: FetchableRecord>(for theType: T.Type) -> [T] {
// ... fetch from a store using the type
// This compiles fine
}
How can I use this with a collection of types?
Ideally, if I have some conformers:
struct ModelA: FetchableRecord { }
struct ModelB: FetchableRecord { }
then I would like to be able to do:
let modelTypes: [FetchableRecord.Type] = [ModelA.self, ModelB.self]
modelTypes.forEach {
fetch(for: $0) // xxx: does not compile: "Cannot invoke 'fetch' with an argument list of type '(for: FetchableRecord.Type)'"
}
At the very least, I would like to figure why this would not be possible.
Thank you.
The reason for the error is FetchableRecord.Type is not the same as ModelA.Type or ModelB.Type. Even if both of the structs conform to FetchableRecord protocol, constraining the models (by conforming to a certain protocol) does not affect the "Types", more technically speaking:
ModelA.self == FetchableRecord.self OR ModelB.self == FetchableRecord.self is false.
In order to resolve this issue, you could implement the method's signiture as:
func fetch(for theType: FetchableRecord.Type) -> [FetchableRecord] {
// ...
}
therefore, your code:
let modelTypes: [FetchableRecord.Type] = [ModelA.self, ModelB.self]
modelTypes.forEach {
fetch(for: $0)
}
should work. At this point, you are dealing with it "Heterogeneously" instead of "Homogeneously".
Furthermore, if that makes it more sensible, note that when calling fetch method as per your implementation, it is:
the parameter type is FetchableRecord.Protocol. However, as per the above-mentioned implementation (in this answer), it is:
the parameter type is FetchableRecord.Type, which is the wanted result.

How send generic value through the function? [duplicate]

I have code that follows the general design of:
protocol DispatchType {}
class DispatchType1: DispatchType {}
class DispatchType2: DispatchType {}
func doBar<D:DispatchType>(value:D) {
print("general function called")
}
func doBar(value:DispatchType1) {
print("DispatchType1 called")
}
func doBar(value:DispatchType2) {
print("DispatchType2 called")
}
where in reality DispatchType is actually a backend storage. The doBarfunctions are optimized methods that depend on the correct storage type. Everything works fine if I do:
let d1 = DispatchType1()
let d2 = DispatchType2()
doBar(value: d1) // "DispatchType1 called"
doBar(value: d2) // "DispatchType2 called"
However, if I make a function that calls doBar:
func test<D:DispatchType>(value:D) {
doBar(value: value)
}
and I try a similar calling pattern, I get:
test(value: d1) // "general function called"
test(value: d2) // "general function called"
This seems like something that Swift should be able to handle since it should be able to determine at compile time the type constraints. Just as a quick test, I also tried writing doBar as:
func doBar<D:DispatchType>(value:D) where D:DispatchType1 {
print("DispatchType1 called")
}
func doBar<D:DispatchType>(value:D) where D:DispatchType2 {
print("DispatchType2 called")
}
but get the same results.
Any ideas if this is correct Swift behavior, and if so, a good way to get around this behavior?
Edit 1: Example of why I was trying to avoid using protocols. Suppose I have the code (greatly simplified from my actual code):
protocol Storage {
// ...
}
class Tensor<S:Storage> {
// ...
}
For the Tensor class I have a base set of operations that can be performed on the Tensors. However, the operations themselves will change their behavior based on the storage. Currently I accomplish this with:
func dot<S:Storage>(_ lhs:Tensor<S>, _ rhs:Tensor<S>) -> Tensor<S> { ... }
While I can put these in the Tensor class and use extensions:
extension Tensor where S:CBlasStorage {
func dot(_ tensor:Tensor<S>) -> Tensor<S> {
// ...
}
}
this has a few side effects which I don't like:
I think dot(lhs, rhs) is preferable to lhs.dot(rhs). Convenience functions can be written to get around this, but that will create a huge explosion of code.
This will cause the Tensor class to become monolithic. I really prefer having it contain the minimal amount of code necessary and expand its functionality by auxiliary functions.
Related to (2), this means that anyone who wants to add new functionality will have to touch the base class, which I consider bad design.
Edit 2: One alternative is that things work expected if you use constraints for everything:
func test<D:DispatchType>(value:D) where D:DispatchType1 {
doBar(value: value)
}
func test<D:DispatchType>(value:D) where D:DispatchType2 {
doBar(value: value)
}
will cause the correct doBar to be called. This also isn't ideal, as it will cause a lot of extra code to be written, but at least lets me keep my current design.
Edit 3: I came across documentation showing the use of static keyword with generics. This helps at least with point (1):
class Tensor<S:Storage> {
// ...
static func cos(_ tensor:Tensor<S>) -> Tensor<S> {
// ...
}
}
allows you to write:
let result = Tensor.cos(value)
and it supports operator overloading:
let result = value1 + value2
it does have the added verbosity of required Tensor. This can made a little better with:
typealias T<S:Storage> = Tensor<S>
This is indeed correct behaviour as overload resolution takes place at compile time (it would be a pretty expensive operation to take place at runtime). Therefore from within test(value:), the only thing the compiler knows about value is that it's of some type that conforms to DispatchType – thus the only overload it can dispatch to is func doBar<D : DispatchType>(value: D).
Things would be different if generic functions were always specialised by the compiler, because then a specialised implementation of test(value:) would know the concrete type of value and thus be able to pick the appropriate overload. However, specialisation of generic functions is currently only an optimisation (as without inlining, it can add significant bloat to your code), so this doesn't change the observed behaviour.
One solution in order to allow for polymorphism is to leverage the protocol witness table (see this great WWDC talk on them) by adding doBar() as a protocol requirement, and implementing the specialised implementations of it in the respective classes that conform to the protocol, with the general implementation being a part of the protocol extension.
This will allow for the dynamic dispatch of doBar(), thus allowing it to be called from test(value:) and having the correct implementation called.
protocol DispatchType {
func doBar()
}
extension DispatchType {
func doBar() {
print("general function called")
}
}
class DispatchType1: DispatchType {
func doBar() {
print("DispatchType1 called")
}
}
class DispatchType2: DispatchType {
func doBar() {
print("DispatchType2 called")
}
}
func test<D : DispatchType>(value: D) {
value.doBar()
}
let d1 = DispatchType1()
let d2 = DispatchType2()
test(value: d1) // "DispatchType1 called"
test(value: d2) // "DispatchType2 called"

"Closure cannot implicitly capture a mutating self parameter" - after updating to Swift 3 [duplicate]

I am using Firebase to observe event and then setting an image inside completion handler
FirebaseRef.observeSingleEvent(of: .value, with: { (snapshot) in
if let _ = snapshot.value as? NSNull {
self.img = UIImage(named:"Some-image")!
} else {
self.img = UIImage(named: "some-other-image")!
}
})
However I am getting this error
Closure cannot implicitly capture a mutating self parameter
I am not sure what this error is about and searching for solutions hasn't helped
The short version
The type owning your call to FirebaseRef.observeSingleEvent(of:with:) is most likely a value type (a struct?), in which case a mutating context may not explicitly capture self in an #escaping closure.
The simple solution is to update your owning type to a reference once (class).
The longer version
The observeSingleEvent(of:with:) method of Firebase is declared as follows
func observeSingleEvent(of eventType: FIRDataEventType,
with block: #escaping (FIRDataSnapshot) -> Void)
The block closure is marked with the #escaping parameter attribute, which means it may escape the body of its function, and even the lifetime of self (in your context). Using this knowledge, we construct a more minimal example which we may analyze:
struct Foo {
private func bar(with block: #escaping () -> ()) { block() }
mutating func bax() {
bar { print(self) } // this closure may outlive 'self'
/* error: closure cannot implicitly capture a
mutating self parameter */
}
}
Now, the error message becomes more telling, and we turn to the following evolution proposal was implemented in Swift 3:
SE-0035: Limiting inout capture to #noescape contexts
Stating [emphasis mine]:
Capturing an inout parameter, including self in a mutating
method, becomes an error in an escapable closure literal, unless the
capture is made explicit (and thereby immutable).
Now, this is a key point. For a value type (e.g. struct), which I believe is also the case for the type that owns the call to observeSingleEvent(...) in your example, such an explicit capture is not possible, afaik (since we are working with a value type, and not a reference one).
The simplest solution to this issue would be making the type owning the observeSingleEvent(...) a reference type, e.g. a class, rather than a struct:
class Foo {
init() {}
private func bar(with block: #escaping () -> ()) { block() }
func bax() {
bar { print(self) }
}
}
Just beware that this will capture self by a strong reference; depending on your context (I haven't used Firebase myself, so I wouldn't know), you might want to explicitly capture self weakly, e.g.
FirebaseRef.observeSingleEvent(of: .value, with: { [weak self] (snapshot) in ...
Sync Solution
If you need to mutate a value type (struct) in a closure, that may only work synchronously, but not for async calls, if you write it like this:
struct Banana {
var isPeeled = false
mutating func peel() {
var result = self
SomeService.synchronousClosure { foo in
result.isPeeled = foo.peelingSuccess
}
self = result
}
}
You cannot otherwise capture a "mutating self" with value types except by providing a mutable (hence var) copy.
Why not Async?
The reason this does not work in async contexts is: you can still mutate result without compiler error, but you cannot assign the mutated result back to self. Still, there'll be no error, but self will never change because the method (peel()) exits before the closure is even dispatched.
To circumvent this, you may try to change your code to change the async call to synchronous execution by waiting for it to finish. While technically possible, this probably defeats the purpose of the async API you're interacting with, and you'd be better off changing your approach.
Changing struct to class is a technically sound option, but doesn't address the real problem. In our example, now being a class Banana, its property can be changed asynchronously who-knows-when. That will cause trouble because it's hard to understand. You're better off writing an API handler outside the model itself and upon finished execution fetch and change the model object. Without more context, it is hard to give a fitting example. (I assume this is model code because self.img is mutated in the OP's code.)
Adding "async anti-corruption" objects may help
I'm thinking about something among the lines of this:
a BananaNetworkRequestHandler executes requests asynchronously and then reports the resulting BananaPeelingResult back to a BananaStore
The BananaStore then takes the appropriate Banana from its inside by looking for peelingResult.bananaID
Having found an object with banana.bananaID == peelingResult.bananaID, it then sets banana.isPeeled = peelingResult.isPeeled,
finally replacing the original object with the mutated instance.
You see, from the quest to find a simple fix it can become quite involved easily, especially if the necessary changes include changing the architecture of the app.
If someone is stumbling upon this page (from search) and you are defining a protocol / protocol extension, then it might help if you declare your protocol as class bound. Like this:
protocol MyProtocol: class {
...
}
You can try this! I hope to help you.
struct Mutating {
var name = "Sen Wang"
mutating func changeName(com : #escaping () -> Void) {
var muating = self {
didSet {
print("didSet")
self = muating
}
}
execute {
DispatchQueue.global(qos: .background).asyncAfter(deadline: .now() + 15, execute: {
muating.name = "Wang Sen"
com()
})
}
}
func execute(with closure: #escaping () -> ()) { closure() }
}
var m = Mutating()
print(m.name) /// Sen Wang
m.changeName {
print(m.name) /// Wang Sen
}
Another solution is to explicitly capture self (since in my case, I was in a mutating function of a protocol extension so I couldn't easily specify that this was a reference type).
So instead of this:
functionWithClosure(completion: { _ in
self.property = newValue
})
I have this:
var closureSelf = self
functionWithClosure(completion: { _ in
closureSelf.property = newValue
})
Which seems to have silenced the warning.
Note this does not work for value types so if self is a value type you need to be using a reference type wrapper in order for this solution to work.

Generic Types Collection

Building on previous question which got resolved, but it led to another problem. If protocol/class types are stored in a collection, retrieving and instantiating them back throws an error. a hypothetical example is below. The paradigm is based on "Program to Interface not an implementation" What does it mean to "program to an interface"?
instantiate from protocol.Type reference dynamically at runtime
public protocol ISpeakable {
init()
func speak()
}
class Cat : ISpeakable {
required init() {}
func speak() {
println("Meow");
}
}
class Dog : ISpeakable {
required init() {}
func speak() {
println("Woof");
}
}
//Test class is not aware of the specific implementations of ISpeakable at compile time
class Test {
func instantiateAndCallSpeak<T: ISpeakable>(Animal:T.Type) {
let animal = Animal()
animal.speak()
}
}
// Users of the Test class are aware of the specific implementations at compile/runtime
//works
let t = Test()
t.instantiateAndCallSpeak(Cat.self)
t.instantiateAndCallSpeak(Dog.self)
//doesn't work if types are retrieved from a collection
//Uncomment to show Error - IAnimal.Type is not convertible to T.Type
var animals: [ISpeakable.Type] = [Cat.self, Dog.self, Cat.self]
for animal in animals {
//t.instantiateAndCallSpeak(animal) //throws error
}
for (index:Int, value:ISpeakable.Type) in enumerate(animals) {
//t.instantiateAndCallSpeak(value) //throws error
}
Edit - My current workaround to iterate through collection but of course it's limiting as the api has to know all sorts of implementations. The other limitation is subclasses of these types (for instance PersianCat, GermanShepherd) will not have their overridden functions called or I go to Objective-C for rescue (NSClassFromString etc.) or wait for SWIFT to support this feature.
Note (background): these types are pushed into array by users of the utility and for loop is executed on notification
var animals: [ISpeakable.Type] = [Cat.self, Dog.self, Cat.self]
for Animal in animals {
if Animal is Cat.Type {
if let AnimalClass = Animal as? Cat.Type {
var instance = AnimalClass()
instance.speak()
}
} else if Animal is Dog.Type {
if let AnimalClass = Animal as? Dog.Type {
var instance = AnimalClass()
instance.speak()
}
}
}
Basically the answer is: correct, you can't do that. Swift needs to determine the concrete types of type parameters at compile time, not at runtime. This comes up in a lot of little corner cases. For instance, you can't construct a generic closure and store it in a variable without type-specifying it.
This can be a little clearer if we boil it down to a minimal test case
protocol Creatable { init() }
struct Object : Creatable { init() {} }
func instantiate<T: Creatable>(Thing: T.Type) -> T {
return Thing()
}
// works. object is of type "Object"
let object = instantiate(Object.self) // (1)
// 'Creatable.Type' is not convertible to 'T.Type'
let type: Creatable.Type = Object.self
let thing = instantiate(type) // (2)
At line 1, the compiler has a question: what type should T be in this instance of instantiate? And that's easy, it should be Object. That's a concrete type, so everything is fine.
At line 2, there's no concrete type that Swift can make T. All it has is Creatable, which is an abstract type (we know by code inspection the actual value of type, but Swift doesn't consider the value, just the type). It's ok to take and return protocols, but it's not ok to make them into type parameters. It's just not legal Swift today.
This is hinted at in the Swift Programming Language: Generic Parameters and Arguments:
When you declare a generic type, function, or initializer, you specify the type parameters that the generic type, function, or initializer can work with. These type parameters act as placeholders that are replaced by actual concrete type arguments when an instance of a generic type is created or a generic function or initializer is called. (emphasis mine)
You'll need to do whatever you're trying to do another way in Swift.
As a fun bonus, try explicitly asking for the impossible:
let thing = instantiate(Creatable.self)
And... swift crashes.
From your further comments, I think closures do exactly what you're looking for. You've made your protocol require trivial construction (init()), but that's an unnecessary restriction. You just need the caller to tell the function how to construct the object. That's easy with a closure, and there is no need for type parameterization at all this way. This isn't a work-around; I believe this is the better way to implement that pattern you're describing. Consider the following (some minor changes to make the example more Swift-like):
// Removed init(). There's no need for it to be trivially creatable.
// Cocoa protocols that indicate a method generally end in "ing"
// (NSCopying, NSCoding, NSLocking). They do not include "I"
public protocol Speaking {
func speak()
}
// Converted these to structs since that's all that's required for
// this example, but it works as well for classes.
struct Cat : Speaking {
func speak() {
println("Meow");
}
}
struct Dog : Speaking {
func speak() {
println("Woof");
}
}
// Demonstrating a more complex object that is easy with closures,
// but hard with your original protocol
struct Person: Speaking {
let name: String
func speak() {
println("My name is \(name)")
}
}
// Removed Test class. There was no need for it in the example,
// but it works fine if you add it.
// You pass a closure that returns a Speaking. We don't care *how* it does
// that. It doesn't have to be by construction. It could return an existing one.
func instantiateAndCallSpeak(builder: () -> Speaking) {
let animal = builder()
animal.speak()
}
// Can call with an immediate form.
// Note that Cat and Dog are not created here. They are not created until builder()
// is called above. #autoclosure would avoid the braces, but I typically avoid it.
instantiateAndCallSpeak { Cat() }
instantiateAndCallSpeak { Dog() }
// Can put them in an array, though we do have to specify the type here. You could
// create a "typealias SpeakingBuilder = () -> Speaking" if that came up a lot.
// Again note that no Speaking objects are created here. These are closures that
// will generate objects when applied.
// Notice how easy it is to pass parameters here? These don't all have to have the
// same initializers.
let animalBuilders: [() -> Speaking] = [{ Cat() } , { Dog() }, { Person(name: "Rob") }]
for animal in animalBuilders {
instantiateAndCallSpeak(animal)
}