This is the function I tried to use
func merge(inout A: DNode?, inout And B: DNode?) -> DNode? {
if A == nil && B == nil {
return nil
}
if A == nil {
return B
}
if B == nil {
return A
}
return A!.isLessThan(B!) ? A! : B!
}
Here is how I tried to use the function 'merge'
class Heap {
var minDNode: DNode?
func start(inout newNode: DNode) {
self.minDNode = merge(&self.minDNode, And: &newNode) // error
// Cannot invoke 'merge' with an argument list of type '(inout DNode?, And: inout DNode)'
}
func merge(inout A: DNode?, inout And B: DNode?) -> DNode? {
...
}
}
How can I fix the problem?
Looking at the answer from Swift optional inout parameters and nil,
making
var minDNode: DNode?
into
var minDNode: DNode? = nil
didn't solve the problem
#MartinR makes a good point in the comments: "Why does merge() take inout parameters? The arguments are not modified, so this seems like an unnecessary complication."
The reason for the error is that you have to pass the exact type when using inout, and DNode and DNode? are two different types.
newNode needs to be declared as optional because that is what merge is expecting:
func start(inout newNode: DNode?) {
self.minDNode = merge(&self.minDNode, And: &newNode) // this call now works
}
You probably should rework your code, though, to remove the inout calls where they aren't needed.
Related
I believe I have some misunderstanding of how generics work. I have the protocol:
protocol CommandProtocol {
func execute<T>() -> T
func unExecute<T>() -> T
}
And a class that conforms to it:
class CalculatorCommand: CommandProtocol {
...
func execute<String>() -> String {
return calculator.performOperation(operator: `operator`, with: operand) as! String
}
func unExecute<Double>() -> Double {
return calculator.performOperation(operator: undo(operator: `operator`), with: operand) as! Double
}
...
}
The calculator.performOperation() method actually returns Double, but here I just try to play with generics so I replace return type from Double to String.
After that, I have a class which invokes these methods:
class Sender {
...
// MARK: - Public methods
func undo() -> Double {
if current > 0 {
current -= 1
let command = commands[current]
return command.unExecute()
}
return 0
}
func redo() -> Double? {
if current < commands.count {
let command = commands[current]
current += 1
let value: Double = command.execute()
print(type(of: value))
return command.execute()
}
return nil
}
...
}
In the undo() method everything works as expected (one thing that I did not understand fully is how Swift really knows whether the unExecute value will return Double or not, or compiler infers it based on the undo() return type?)
But in the redo() method, I am calling the execute() method which returns String, but the method expects Double, so I thought that my program would crash, but not, it works totally fine as if execute() method returns Double.
Please, could someone explain to me what exactly happens under the cover of this code? Thank you in advance.
You are correct that you misunderstand generics. First, let's look at this protocol:
protocol CommandProtocol {
func execute<T>() -> T
func unExecute<T>() -> T
}
This says "no matter what type the caller requests, this function will return that type." That's impossible to successfully implement (by "successfully" I mean "correctly returns a value in all cases without crashing"). According this protocol, I'm allowed to write the following code:
func run(command: CommandProtocol) -> MyCustomType {
let result: MyCustomType = command.execute()
return result
}
There's no way to write an execute that will actually do that, no matter what MyCustomType is.
Your confusion is compounded by a subtle syntax mistake:
func execute<String>() -> String {
This does not mean "T = String," which is what I think you expect it to mean. It creates a type variable called String (that has nothing to do with Swift's String type), and it promises to return it. when you later write as! String, that means "if this values isn't compatible with the type requested (not "a string" but whatever was requested by the caller), then crash.
The tool that behaves closer to what you want here is an associated type. You meant to write this:
protocol CommandProtocol {
associatedType T
func execute() -> T
func unExecute() -> T
}
But this almost certainly won't do what you want. For example, with that, it's impossible to have an array of commands.
Instead what you probably want is a struct:
struct Command {
let execute: () -> Void
let undo: () -> Void
}
You then make Commands by passing closures that do what you want:
let command = Command(execute: { self.value += 1 },
undo: { self.value -= 1 })
Alternately, since this is a calculator, you could do it this way:
struct Command {
let execute: (Double) -> Double
let undo: (Double) -> Double
}
let command = Command(execute: { $0 + 1 }, undo: { $0 - 1 })
Then your caller would look like:
value = command.execute(value)
value = command.undo(value)
You think this returns a Swift.Double, but no. This code is no different than using T instead of Double. Swift does not require the names of generic placeholders to match what you put in a protocol.
func unExecute<Double>() -> Double {
return calculator.performOperation(operator: undo(operator: `operator`), with: operand) as! Double
}
You're not actually looking for generic methods. You want this, instead.
protocol CommandProtocol {
associatedtype ExecuteValue
associatedtype UnExecuteValue
func execute() -> ExecuteValue
func unExecute() -> UnExecuteValue
}
I have been trying to extract non-nil values from the String array. Like below. But, my senior wants it to be able to extract non-nil values from other types too.
I read, generics could help me for handling different types. How can I use generics so that I get to use following like extension to work with other types too?
getNonNil must return the extracted non-nil values of the specific type (i.e. if array is [String?] it must return [String], returns [Int] if [Int?])
Because I have to do further calculations.
What I have tried is below:
import Foundation
// Extended the collection-type so that collectiontype is constrained to having element with optional strings
extension CollectionType where Self.Generator.Element == Optional<String>{
func getNonNil() -> [String] {
// filter out all nil elements and forcefully unwrap them using map
return self.filter({$0 != nil}).map({$0!})
}
}
// Usage
let x: [String?] = ["Er", "Err", nil, "errr"]
x.getNonNil().forEach { (str) in
print(str)
}
For getNonNil you could simply use
x.flatMap { $0 }
// returns ["Er", "Err", "errr"] which is [String]
For the original question, typically you could introduce a protocol to the Optional type (e.g. via the muukii/OptionalProtocol package):
protocol OptionalProtocol {
associatedtype Wrapped
var value: Wrapped? { get }
}
extension Optional: OptionalProtocol {
public var value: Wrapped? { return self }
}
extension CollectionType where Self.Generator.Element: OptionalProtocol {
func getNonNil() -> [Self.Generator.Element.Wrapped] {
...
}
}
There's no easy way of achieving this through an extension, as you cannot introduce new generic types into extensions (although this is part of the Swift Generics Manifesto – so may well be possibly in a future version of Swift).
As #kennytm says, the simplest solution is just to use flatMap, which filters out nil:
x.flatMap{$0}.forEach { (str) in
print(str)
}
If however, you still want this as an extension, you could use a protocol workaround in order to allow you to constrain the extension to any optional element type (Swift 3):
protocol _OptionalProtocol {
associatedtype Wrapped
func _asOptional() -> Wrapped?
}
extension Optional : _OptionalProtocol {
func _asOptional() -> Wrapped? {return self}
}
extension Collection where Self.Iterator.Element : _OptionalProtocol {
func getNonNil() -> [Iterator.Element.Wrapped] {
return flatMap{$0._asOptional()}
}
}
...
let x : [String?] = ["Er", "Err", nil, "errr"]
x.getNonNil().forEach { (str) in
print(str)
}
(In Swift 3, CollectionType has been renamed to Collection, and Generator is now Iterator)
Although flatMap is almost certainly preferred in this situation, I'm only really adding this for the sake of completion.
The easiest approach is using flatMap as kennytm suggested, but if you absolutely want to know how to create such a method using generics, one approach would be to create a global method that takes in the collection as a parameter:
public func getNonNil<T, C: CollectionType where C.Generator.Element == Optional<T>>(collection: C) -> [T] {
return collection.filter({$0 != nil}).map({$0!})
}
let x: [String?] = ["Er", "Err", nil, "errr"]
print(getNonNil(x)) // returns ["Er", "Err", "errr"]
I'm currently trying out with some basic data structures like LinkedList. I defined a ListNode class of generics values, like this:
class ListNode<T> {
var nodeContent: T
var nextNode: ListNode<T>? = nil
init() {
// details omitted here
}
And then a linked list. I want to implement the contains() method, so I have sth like this:
func contains<T>(_ item: T) -> Bool {
var currNode = self.head
while (currNode != nil) {
if currNode?.nodeContent == item {
return true
}
currNode = currNode?.nextNode
}
return false
}
Then it's giving me error saying that '==' cannot applied to T and T types. I then looked through the language guide and changed ListNode class and LinkedList struct to this:
class ListNode<T: Equatable>{}
struct LinkedList<T: Equatable>{}
But it's not working, so I added 'Equatable' to func itself:
func contains<T: Equatable>(_ item: T) -> Bool
Still fails. I tried pasting the sample function from the language guide inside,
func findIndex<T: Equatable>(of valueToFind: T, in array:[T]) -> Int? {
for (index, value) in array.enumerated() {
if value == valueToFind {
return index
}
}
return nil
}
No error occurs. May I know why it's like this? I tried searching, but all suggested answers like this doesn't clear my doubts. Thanks in advance!
You just don't need to make the contains method generic (twice). It's inside of your already generic class and knows about T type. It's right to require T: Equatable in the type declaration.
findIndex(of:in:) works as is, because it's not a method, but rather a standalone generic function.
I couldn't solve an "if let" issue in my code. Based on the error it says that I must use an optional type?
#IBAction func operate(sender: UIButton) {
if userIsInTheMiddleOfTypingANumber{
enter()
}
if let operation = sender.currentTitle {
if let result = calcModel.performOperation(operation){
displayValue = result
}else {
displayValue = 0
}
}
}
I suspect that your problem is in this line:
if let result = calcModel.performOperation(operation)
Your performOperation function's return type is (), or void, which means it doesn't return anything. Chances are, to get the error in the title, your performOperation function on calcModel has the following signature:
func performOperation(operation: String) {
Note the lack of an arrow and type. If you're going to return a result, the signature should be something like this:
func performOperation(operation: String) -> Int {
You would only need the if let, if you decided to return Int?.
I have this question except for Swift. How do I use a Type variable in a generic?
I tried this:
func intType() -> Int.Type {
return Int.self
}
func test() {
var t = self.intType()
var arr = Array<t>() // Error: "'t' is not a type". Uh... yeah, it is.
}
This didn't work either:
var arr = Array<t.Type>() // Error: "'t' is not a type"
var arr = Array<t.self>() // Swift doesn't seem to even understand this syntax at all.
Is there a way to do this? I get the feeling that Swift just doesn't support it and is giving me somewhat ambiguous error messages.
Edit: Here's a more complex example where the problem can't be circumvented using a generic function header. Of course it doesn't make sense, but I have a sensible use for this kind of functionality somewhere in my code and would rather post a clean example instead of my actual code:
func someTypes() -> [Any.Type] {
var ret = [Any.Type]()
for (var i = 0; i<rand()%10; i++) {
if (rand()%2 == 0){ ret.append(Int.self) }
else {ret.append(String.self) }
}
return ret
}
func test() {
var ts = self.someTypes()
for t in ts {
var arr = Array<t>()
}
}
Swift's static typing means the type of a variable must be known at compile time.
In the context of a generic function func foo<T>() { ... }, T looks like a variable, but its type is actually known at compile time based on where the function is called from. The behavior of Array<T>() depends on T, but this information is known at compile time.
When using protocols, Swift employs dynamic dispatch, so you can write Array<MyProtocol>(), and the array simply stores references to things which implement MyProtocol — so when you get something out of the array, you have access to all functions/variables/typealiases required by MyProtocol.
But if t is actually a variable of kind Any.Type, Array<t>() is meaningless since its type is actually not known at compile time. (Since Array is a generic struct, the compiler needs know which type to use as the generic parameter, but this is not possible.)
I would recommend watching some videos from WWDC this year:
Protocol-Oriented Programming in Swift
Building Better Apps with Value Types in Swift
I found this slide particularly helpful for understanding protocols and dynamic dispatch:
There is a way and it's called generics. You could do something like that.
class func foo() {
test(Int.self)
}
class func test<T>(t: T.Type) {
var arr = Array<T>()
}
You will need to hint the compiler at the type you want to specialize the function with, one way or another. Another way is with return param (discarded in that case):
class func foo() {
let _:Int = test()
}
class func test<T>() -> T {
var arr = Array<T>()
}
And using generics on a class (or struct) you don't need the extra param:
class Whatever<T> {
var array = [T]() // another way to init the array.
}
let we = Whatever<Int>()
jtbandes' answer - that you can't use your current approach because Swift is statically typed - is correct.
However, if you're willing to create a whitelist of allowable types in your array, for example in an enum, you can dynamically initialize different types at runtime.
First, create an enum of allowable types:
enum Types {
case Int
case String
}
Create an Example class. Implement your someTypes() function to use these enum values. (You could easily transform a JSON array of strings into an array of this enum.)
class Example {
func someTypes() -> [Types] {
var ret = [Types]()
for _ in 1...rand()%10 {
if (rand()%2 == 0){ ret.append(.Int) }
else {ret.append(.String) }
}
return ret
}
Now implement your test function, using switch to scope arr for each allowable type:
func test() {
let types = self.someTypes()
for type in types {
switch type {
case .Int:
var arr = [Int]()
arr += [4]
case .String:
var arr = [String]()
arr += ["hi"]
}
}
}
}
As you may know, you could alternatively declare arr as [Any] to mix types (the "heterogenous" case in jtbandes' answer):
var arr = [Any]()
for type in types {
switch type {
case .Int:
arr += [4]
case .String:
arr += ["hi"]
}
}
print(arr)
I would break it down with the things you already learned from the first answer. I took the liberty to refactor some code. Here it is:
func someTypes<T>(t: T.Type) -> [Any.Type] {
var ret = [Any.Type]()
for _ in 0..<rand()%10 {
if (rand()%2 == 0){ ret.append(T.self) }
else {
ret.append(String.self)
}
}
return ret
}
func makeArray<T>(t: T) -> [T] {
return [T]()
}
func test() {
let ts = someTypes(Int.self)
for t in ts {
print(t)
}
}
This is somewhat working but I believe the way of doing this is very unorthodox. Could you use reflection (mirroring) instead?
Its possible so long as you can provide "a hint" to the compiler about the type of... T. So in the example below one must use : String?.
func cast<T>(_ value: Any) -> T? {
return value as? T
}
let inputValue: Any = "this is a test"
let casted: String? = cast(inputValue)
print(casted) // Optional("this is a test")
print(type(of: casted)) // Optional<String>
Why Swift doesn't just allow us to let casted = cast<String>(inputValue) I'll never know.
One annoying scenerio is when your func has no return value. Then its not always straightford to provide the necessary "hint". Lets look at this example...
func asyncCast<T>(_ value: Any, completion: (T?) -> Void) {
completion(value as? T)
}
The following client code DOES NOT COMPILE. It gives a "Generic parameter 'T' could not be inferred" error.
let inputValue: Any = "this is a test"
asyncCast(inputValue) { casted in
print(casted)
print(type(of: casted))
}
But you can solve this by providing a "hint" to compiler as follows:
asyncCast(inputValue) { (casted: String?) in
print(casted) // Optional("this is a test")
print(type(of: casted)) // Optional<String>
}