How to Use Automapper on DTO Returned From EF? - entity-framework

I was told to use automapper in the code below. I cannot get clarification for reasons that are too lengthy to go into. What object am I supposed to be mapping to what object? I don't see a "source" object, since the source is the database...
Would really appreciate any help on how to do this with automapper. Note, the actual fields are irrelevant, I need help with the general concept. I do understand how mapping works when mapping from one object to another.
public IQueryable<Object> ReturnDetailedSummaries(long orgId)
{
var summaries = from s in db.ReportSummaries
where s.OrganizationId == orgId
select new SummaryViewModel
{
Id = s.Id,
Name = s.Name,
AuditLocationId = s.AuditLocationId,
AuditLocationName = s.Location.Name,
CreatedOn = s.CreatedOn,
CreatedById = s.CreatedById,
CreatedByName = s.User.Name,
OfficeId = s.OfficeId,
OfficeName = s.Office.Name,
OrganizationId = s.OrganizationId,
OrganizationName = s.Organization.Name,
IsCompleted = s.IsCompleted,
isHidden = s.isHidden,
numberOfItemsInAuditLocations = s.numberOfItemsInAuditLocations,
numberOfLocationsScanned = s.numberOfLocationsScanned,
numberOfItemsScanned = s.numberOfItemsScanned,
numberofDiscrepanciesFound = s.numberofDiscrepanciesFound
};
return summaries;
}

It is a handy and a timesaver, especially if you use a one to one naming between translations layers. Here is how I use it.
For single item
public Domain.Data.User GetUserByUserName(string userName)
{
Mapper.CreateMap<User, Domain.Data.User>();
return (
from s in _dataContext.Users
where s.UserName==userName
select Mapper.Map<User, Domain.Data.User>(s)
).SingleOrDefault();
}
Multiple Items
public List<Domain.Data.User> GetUsersByProvider(int providerID)
{
Mapper.CreateMap<User, Domain.Data.User>();
return (
from s in _dataContext.Users
where s.ProviderID== providerID
select Mapper.Map<User, Domain.Data.User>(s)
).ToList();
}

It looks like you already have a model? SummaryViewModel?
If this isn't the DTO, then presumably you want to do:
Mapper.CreateMap<SummaryViewModel, SummaryViewModelDto>();
SummaryViewModelDto summaryViewModelDto =
Mapper.Map<SummaryViewModel, SummaryViewModelDto>(summaryViewModel);
AutoMapper will copy fields from one object to another, to save you having to do it all manually.
See https://github.com/AutoMapper/AutoMapper/wiki/Getting-started

The source is your entity class ReportSummary, the target is SummaryViewModel:
Mapper.CreateMap<ReportSummary, SummaryViewModel>();
The best way to use AutoMapper in combination with an IQueryable data source is through the Project.To API:
var summaries = db.ReportSummaries.Where(s => s.OrganizationId == orgId)
.Project().To<SummaryViewModel>();
Project.To translates the properties in the target model straight to the selected columns in the generated SQL.
Mapper.Map, on the other hand, only works on in-memory collections, so you can only use it when you first fetch complete ReportSummary objects from the database. (In this case there may not be much of a difference, but in other cases it can be substantial).

Related

Linq to select top 1 related entity

How can I include a related entity, but only select the top 1?
public EntityFramework.Member Get(string userName)
{
var query = from member in context.Members
.Include(member => member.Renewals)
where member.UserName == userName
select member;
return query.SingleOrDefault();
}
According to MSDN:
"Note that it is not currently possible to filter which related entities are loaded. Include will always bring in all related entities."
http://msdn.microsoft.com/en-us/data/jj574232
There is also a uservoice item for this functionality:
http://data.uservoice.com/forums/72025-entity-framework-feature-suggestions/suggestions/1015345-allow-filtering-for-include-extension-method
The approach to use an anonymous object works, even though it's not clean as you wish it would be:
public Member GetMember(string username)
{
var result = (from m in db.Members
where m.Username == username
select new
{
Member = m,
FirstRenewal = m.Renewals.FirstOrDefault()
}).AsEnumerable().Select(r => r.Member).FirstOrDefault();
return result;
}
The FirstRenewal property is used just to make EF6 load the first renewal into the Member object. As a result the Member returned from the GetMember() method contains only the first renewal.
This code generates a single Query to the DB, so maybe it's good enough for You.

Best Way to convert one Edmx Entity to one Business entity

I am developing one application in which data is access from edmx entities and from that we have to fill each business entity after retriving data from edmx entity like:-
var tblproducts = tblproductsData
.Select(t => new tblProduct()
{
CategoryID = t.CategoryID,
Description = t.Description,
ID = t.ID,
Image = t.Image,
InsDt = t.InsDt,
Price = t.Price,
Quantity = t.Quantity,
Status = t.Status,
Title = t.Title,
tblCategory = new EFDbFirst.Models.tblCategory()
{
ID = t.tblCategory.ID,
status = t.tblStatus.StatusID,
Title_Category = t.tblCategory.Title_Category
},
tblStatu = new EFDbFirst.Models.tblStatu()
{
StatusDescription = t.tblStatus.StatusDescription
,
StatusID = t.tblStatus.StatusID
}
});
I am fadeup with this because everytime i have to convert one to another while getting data and setting data in db,
Is there any good way to create some common mehod which takes one anonymous type and converts it to another anonymous type.
Thanks in Advance
Your example isn't that clear.
First of all, EF doesn't work with anonymous types inside itself, it works with the EF types you have defined either using edmx file or code first. You can however create anonymous types yourself by defining an Select statement.
E.g:
var products = context.tblProductsData
.Select(r => new { Description = r.Description }); //new without typename is an
//anonymous object
The tblProduct, tblCategory and tblStatu objects, are they EF types? If so, you don't need to write a Select, EF will generate objects for you when you execute it.
E.g:
var products = context.tblProductsData.ToList();
This will automatically generate tblProduct objects for you. When you try to navigate to tblProduct.tblCategory or tblProduct.tblStatu, lazy loading will retrieve them for you. If you want to explicit load them during first query (eager-loading) use the Include function.
E.g:
var products = context.tblProductsData.Include(r => r.tblCategory)
.Include(r => r.tblStatu).ToList();
However if tblProducts, tblCategory and tblStatu is business objects and NOT EF types, there isn't any other way to do this, you have to explicit create them in a Select statement.

How to update only modified values (EntityFramework 5.0)?

I have this entity, want to update using entityframework
EmployeeModel employee = new EmployeeModel
{
Id = 1000, //This one must
FirstName = modifiedValue,
Email = modifiedValue,
LastName = originalValue,
Phone = originalValue
};
Code to update
_db.ObjectStateManager.ChangeObjectState(employee, EntityState.Modified);
_db.SaveChanges();
This is the SQL statement got once updated
Update Employee set Id=1138,FirstName='modifiedValue',Email='modifiedValue',LastName= 'OriginalValue',phone='originalValue' where Id=1138
But I am expecting this
Update Employee set FirstName='modifiedValue', Email='modifiedValue' where Id=1138.
I dont know what I am missing here. Please let me know.
This problem is common when dealing with DTOs. An employee entity is fetched from the database, mapped to a DTO and sent over the wire. The client then modifies this DTO and sends it back to the server.
When you touch (set) a property on an EF entity, EF will assume that the value has been changed. Even if the old value and the new value are exactly the same.
The same problem occurs when you map the DTO to a new Entity and attach it to EF and updating its status to 'Modified'.
Using AutoMapper:
// This will result in the full update statement
var employee = AutoMapper.Mapper.Map<EmployeeDto, Employee>(dto);
// This will result in a smaller update statement (only actual changes)
var employee = dbContext.Employees.Find(dto.Id);
AutoMapper.Mapper.Map(dto, employee);
Or, manually (I would avoid doing this, but just for the sake of completeness):
// This will result in a smaller update statement (only actual changes)
var employee = dbContext.Employees.Find(dto.Id);
if (employee.Email != dto.Email )
employee.Email = dto.Email;
There are probably some other ways for dealing with this problem... but using AutoMapper together with Entity Framework correctly is definitely one of the easiest ways.
This is the solution I got
var entity = _db.CreateObjectSet<Employee>();
entity.Detach(employee);
entity.Attach(employee);
foreach (string modifiedPro in employeeModel.ModifiedProperties){
_db.ObjectStateManager.GetObjectStateEntry(employee).SetModifiedProperty(modifiedPro);}
_db.SaveChanges();
Only modified values in the sql update statement
Update Employee set FirstName='modifiedValue', Email='modifiedValue' where Id=1138.
If anybody knows better answer than this, Please post your suggestions
You can try this way
public update(Person model)
{
// Here model is model return from form on post
var oldobj = db.Person.where(x=>x.ID = model.ID).SingleOrDefault();
var UpdatedObj = (Person) Entity.CheckUpdateObject(oldobj, model);
db.Entry(oldobj).CurrentValues.SetValues(UpdatedObj);
}
public static object CheckUpdateObject(object originalObj, object updateObj)
{
foreach (var property in updateObj.GetType().GetProperties())
{
if (property.GetValue(updateObj, null) == null)
{
property.SetValue(updateObj,originalObj.GetType().GetProperty(property.Name)
.GetValue(originalObj, null));
}
}
return updateObj;
}

In Entity Framework, take a newly created object and use it to update an existing record

Here's what I'd like to do:
var myCustomer = new Customer();
myCustomer.Name = "Bob";
myCustomer.HasAJob = true;
myCustomer.LikesPonies = false;
Then I'd like to pass it into an update method:
public UpdateCustomer(Customer cust)
{
using(var context = dbcontext())
{
var dbCust = context.Customers.FirstOrDefault(c => c.Name == cust.Name);
if(dbCust != null)
{
// Apply values from cust here so I don't have to do this:
dbCust.HasAJob = cust.HasAJob;
dbCust.LikesPonies = cust.LikesPonies
}
context.SaveChanges();
}
}
The reason for this is I'm working in multiple different parts of my application, and/or across DLLs. Is this possible?
EDIT: Found this question to be immensely useful:
Update Row if it Exists Else Insert Logic with Entity Framework
If you are sure that the entity is in the database and you have key you would just Attach the object you have to the context. Note that attached entities are by default in Unchanged state as the assumption is that all the values of properties are the same as in the database. If this is not the case (i.e. values are different) you need to change the state of the entity to modified. Take a look at this blog post: http://blogs.msdn.com/b/adonet/archive/2011/01/29/using-dbcontext-in-ef-feature-ctp5-part-4-add-attach-and-entity-states.aspx it describes several sceanrios including the one you are asking about.

How to do recursive load with Entity framework?

I have a tree structure in the DB with TreeNodes table. the table has nodeId, parentId and parameterId. in the EF, The structure is like TreeNode.Children where each child is a TreeNode...
I also have a Tree table with contain id,name and rootNodeId.
At the end of the day I would like to load the tree into a TreeView but I can't figure how to load it all at once.
I tried:
var trees = from t in context.TreeSet.Include("Root").Include("Root.Children").Include("Root.Children.Parameter")
.Include("Root.Children.Children")
where t.ID == id
select t;
This will get me the the first 2 generations but not more.
How do I load the entire tree with all generations and the additional data?
I had this problem recently and stumbled across this question after I figured a simple way to achieve results. I provided an edit to Craig's answer providing a 4th method, but the powers-that-be decided it should be another answer. That's fine with me :)
My original question / answer can be found here.
This works so long as your items in the table all know which tree they belong to (which in your case it looks like they do: t.ID). That said, it's not clear what entities you really have in play, but even if you've got more than one, you must have a FK in the entity Children if that's not a TreeSet
Basically, just don't use Include():
var query = from t in context.TreeSet
where t.ID == id
select t;
// if TreeSet.Children is a different entity:
var query = from c in context.TreeSetChildren
// guessing the FK property TreeSetID
where c.TreeSetID == id
select c;
This will bring back ALL the items for the tree and put them all in the root of the collection. At this point, your result set will look like this:
-- Item1
-- Item2
-- Item3
-- Item4
-- Item5
-- Item2
-- Item3
-- Item5
Since you probably want your entities coming out of EF only hierarchically, this isn't what you want, right?
.. then, exclude descendants present at the root level:
Fortunately, because you have navigation properties in your model, the child entity collections will still be populated as you can see by the illustration of the result set above. By manually iterating over the result set with a foreach() loop, and adding those root items to a new List<TreeSet>(), you will now have a list with root elements and all descendants properly nested.
If your trees get large and performance is a concern, you can sort your return set ASCENDING by ParentID (it's Nullable, right?) so that all the root items are first. Iterate and add as before, but break from the loop once you get to one that is not null.
var subset = query
// execute the query against the DB
.ToList()
// filter out non-root-items
.Where(x => !x.ParentId.HasValue);
And now subset will look like this:
-- Item1
-- Item2
-- Item3
-- Item4
-- Item5
About Craig's solutions:
You really don't want to use lazy loading for this!! A design built around the necessity for n+1 querying will be a major performance sucker. ********* (Well, to be fair, if you're going to allow a user to selectively drill down the tree, then it could be appropriate. Just don't use lazy loading for getting them all up-front!!)I've never tried the nested set stuff, and I wouldn't suggest hacking EF configuration to make this work either, given there is a far easier solution. Another reasonable suggestion is creating a database view that provides the self-linking, then map that view to an intermediary join/link/m2m table. Personally, I found this solution to be more complicated than necessary, but it probably has its uses.
When you use Include(), you are asking the Entity Framework to translate your query into SQL. So think: How would you write an SQL statement which returns a tree of an arbitrary depth?
Answer: Unless you are using specific hierarchy features of your database server (which are not SQL standard, but supported by some servers, such as SQL Server 2008, though not by its Entity Framework provider), you wouldn't. The usual way to handle trees of arbitrary depth in SQL is to use the nested sets model rather than the parent ID model.
Therefore, there are three ways which you can use to solve this problem:
Use the nested sets model. This requires changing your metadata.
Use SQL Server's hierarchy features, and hack the Entity Framework into understanding them (tricky, but this technique might work). Again, you'll need to change your metadata.i
Use explicit loading or EF 4's lazy loading instead of eager loading. This will result in many database queries instead of one.
I wanted to post up my answer since the others didn't help me.
My database is a little different, basically my table has an ID and a ParentID. The table is recursive. The following code gets all children and nests them into a final list.
public IEnumerable<Models.MCMessageCenterThread> GetAllMessageCenterThreads(int msgCtrId)
{
var z = Db.MCMessageThreads.Where(t => t.ID == msgCtrId)
.Select(t => new MCMessageCenterThread
{
Id = t.ID,
ParentId = t.ParentID ?? 0,
Title = t.Title,
Body = t.Body
}).ToList();
foreach (var t in z)
{
t.Children = GetChildrenByParentId(t.Id);
}
return z;
}
private IEnumerable<MCMessageCenterThread> GetChildrenByParentId(int parentId)
{
var children = new List<MCMessageCenterThread>();
var threads = Db.MCMessageThreads.Where(x => x.ParentID == parentId);
foreach (var t in threads)
{
var thread = new MCMessageCenterThread
{
Id = t.ID,
ParentId = t.ParentID ?? 0,
Title = t.Title,
Body = t.Body,
Children = GetChildrenByParentId(t.ID)
};
children.Add(thread);
}
return children;
}
For completeness, here's my model:
public class MCMessageCenterThread
{
public int Id { get; set; }
public int ParentId { get; set; }
public string Title { get; set; }
public string Body { get; set; }
public IEnumerable<MCMessageCenterThread> Children { get; set; }
}
I wrote something recently that does N+1 selects to load the whole tree, where N is the number of levels of your deepest path in the source object.
This is what I did, given the following self-referencing class
public class SomeEntity
{
public int Id { get; set; }
public int? ParentId { get; set; }
public string Name { get; set;
}
I wrote the following DbSet helper
using System;
using System.Collections.Generic;
using System.Linq;
using System.Linq.Expressions;
using System.Threading.Tasks;
namespace Microsoft.EntityFrameworkCore
{
public static class DbSetExtensions
{
public static async Task<TEntity[]> FindRecursiveAsync<TEntity, TKey>(
this DbSet<TEntity> source,
Expression<Func<TEntity, bool>> rootSelector,
Func<TEntity, TKey> getEntityKey,
Func<TEntity, TKey> getChildKeyToParent)
where TEntity: class
{
// Keeps a track of already processed, so as not to invoke
// an infinte recursion
var alreadyProcessed = new HashSet<TKey>();
TEntity[] result = await source.Where(rootSelector).ToArrayAsync();
TEntity[] currentRoots = result;
while (currentRoots.Length > 0)
{
TKey[] currentParentKeys = currentRoots.Select(getEntityKey).Except(alreadyProcessed).ToArray();
alreadyProcessed.AddRange(currentParentKeys);
Expression<Func<TEntity, bool>> childPredicate = x => currentParentKeys.Contains(getChildKeyToParent(x));
currentRoots = await source.Where(childPredicate).ToArrayAsync();
}
return result;
}
}
}
Whenever you need to load a whole tree you simply call this method, passing in three things
The selection criteria for your root objects
How to get the property for the primary key of the object (SomeEntity.Id)
How to get the child's property that refers to its parent (SomeEntity.ParentId)
For example
SomeEntity[] myEntities = await DataContext.SomeEntity.FindRecursiveAsync(
rootSelector: x => x.Id = 42,
getEntityKey: x => x.Id,
getChildKeyToParent: x => x.ParentId).ToArrayAsync();
);
Alternatively, if you can add a RootId column to the table then for each non-root entry you can set this column to the ID of the root of the tree. Then you can fetch everything with a single select
DataContext.SomeEntity.Where(x => x.Id == rootId || x.RootId == rootId)
For an example of loading in child objects, I'll give the example of a Comment object that holds a comment. Each comment has a possible child comment.
private static void LoadComments(<yourObject> q, Context yourContext)
{
if(null == q | null == yourContext)
{
return;
}
yourContext.Entry(q).Reference(x=> x.Comment).Load();
Comment curComment = q.Comment;
while(null != curComment)
{
curComment = LoadChildComment(curComment, yourContext);
}
}
private static Comment LoadChildComment(Comment c, Context yourContext)
{
if(null == c | null == yourContext)
{
return null;
}
yourContext.Entry(c).Reference(x=>x.ChildComment).Load();
return c.ChildComment;
}
Now if you were having something that has collections of itself you would need to use Collection instead of Reference and do the same sort of diving down. At least that's the approach I took in this scenario as we were dealing with Entity and SQLite.
This is an old question, but the other answers either had n+1 database hits or their models were conducive to bottom-up (trunk to leaves) approaches. In this scenario, a tag list is loaded as a tree, and a tag can have multiple parents. The approach I use only has two database hits: the first to get the tags for the selected articles, then another that eager loads a join table. Thus, this uses a top-down (leaves to trunk) approach; if your join table is large or if the result cannot really be cached for reuse, then eager loading the whole thing starts to show the tradeoffs with this approach.
To begin, I initialize two HashSets: one to hold the root nodes (the resultset), and another to keep a reference to each node that has been "hit."
var roots = new HashSet<AncestralTagDto>(); //no parents
var allTags = new HashSet<AncestralTagDto>();
Next, I grab all of the leaves that the client requested, placing them into an object that holds a collection of children (but that collection will remain empty after this step).
var startingTags = await _dataContext.ArticlesTags
.Include(p => p.Tag.Parents)
.Where(t => t.Article.CategoryId == categoryId)
.GroupBy(t => t.Tag)
.ToListAsync()
.ContinueWith(resultTask =>
resultTask.Result.Select(
grouping => new AncestralTagDto(
grouping.Key.Id,
grouping.Key.Name)));
Now, let's grab the tag self-join table, and load it all into memory:
var tagRelations = await _dataContext.TagsTags.Include(p => p.ParentTag).ToListAsync();
Now, for each tag in startingTags, add that tag to the allTags collection, then travel down the tree to get the ancestors recursively:
foreach (var tag in startingTags)
{
allTags.Add(tag);
GetParents(tag);
}
return roots;
Lastly, here's the nested recursive method that builds the tree:
void GetParents(AncestralTagDto tag)
{
var parents = tagRelations.Where(c => c.ChildTagId == tag.Id).Select(p => p.ParentTag);
if (parents.Any()) //then it's not a root tag; keep climbing down
{
foreach (var parent in parents)
{
//have we already seen this parent tag before? If not, instantiate the dto.
var parentDto = allTags.SingleOrDefault(i => i.Id == parent.Id);
if (parentDto is null)
{
parentDto = new AncestralTagDto(parent.Id, parent.Name);
allTags.Add(parentDto);
}
parentDto.Children.Add(tag);
GetParents(parentDto);
}
}
else //the tag is a root tag, and should be in the root collection. If it's not in there, add it.
{
//this block could be simplified to just roots.Add(tag), but it's left this way for other logic.
var existingRoot = roots.SingleOrDefault(i => i.Equals(tag));
if (existingRoot is null)
roots.Add(tag);
}
}
Under the covers, I am relying on the properties of a HashSet to prevent duplicates. To that end, it's important that the intermediate object that you use (I used AncestralTagDto here, and its Children collection is also a HashSet), override the Equals and GetHashCode methods as appropriate for your use-case.