How to extract LBP features from facial images in MATLAB? - matlab

I'm not familiar with Local Binary Pattern (LBP), could anyone help me to know how to extract LBP features from facial images (I need a simple code example)?
While searching, I found this code, but I didn't understand it.

So first of all you need to split the face into a certain amount of
sections.
For each of these sections you then have to loop through the all of
the pixels contained within that section and get their value (grey scale or colour values).
For each pixel check the value of the pixels which border it in (diagonals and up down left and right) and save them
for each of the directions check if the colour value of. if the colour is greater than the original pixels value you can assign that value a 1 and if it is less you can assign it as a 0.
you should get a list of 1's and 0's from the previous steps. put these numbers together and it will be a large binary number, you should be able to convert this to decimal and you will have a number assigned for that pixel. save this number per pixel.
after you have got a decimal number for each pixel within a section you can average all of the values to get an average number for this section.
This may not be the best description of how this works so here is a useful picture which might help you.

There is an extractLBPFeatures function in the R2015b release of the Computer Vision System Toolbox for MATLAB.

Related

Decoding Keyence LJ-X8000 Bitmap-Height Image

I have a Keyence Line Laser System LJ-X 8000, that I use to scan the surface of different objects.
The Controller saves the height information as a bitmap, with each pixel representing one height value. After a lot of tinkering, I found out, that Keyence is not using the actual colors, rather than using the 24-Bit RGB-triplets as some form of binary storage. However, no combination of these bytes seems to work for me. Are there any common storage methods for 24-bit Integers?
To decode those values, I did a scan covering the whole measurement range of the scanner, including some out of range values in the beginning and the end. If you look at the distribution of the values of each color plane, you can see, that the first and third plane actually only use values up to 8/16 which means only 3/4 Bits. This is also visible in the image itself, as it mainly shows a green color.
I concluded that Keyence uses the full byte of the green color plane, 3 Bits of the first and 4 Bits of the last plane to store the height information. Keyence seems to have chosen some weird 15 Bit Integer Format to store their data.
With a little bit-shifting and knowing that the scanner has a valid range from [-2.2, 2.2], I was able to build the following simple little (Matlab-) script to calculate the height information for each pixel:
HeightValBin = bitshift(scanIm(:,:,2),7, 'uint16') ...
+ bitshift(scanIm(:,:,1),4, 'uint16')...
+ bitshift(scanIm(:,:,3),0, 'uint16');
scanBinValScaled = interp1([0,2^15], [-2.2, 2.2], double(scanBinVal));
Keyence offers a software to convert those .bmp into .csv-files, but without an API to automate the process. As I will have to deal with a lot of these files I needed to automate this process.
The calculated values from the rgb triplets are actually even more precise than the exported csv, as the csv only shows 4 digits after the decimal point.

Paraview glyphs too packed issues

I was visualizing my vorticity vector field and notice that I am not able to see the pattern without zooming in as there are too many glyphs and are too packed.
Currently, I am using a calculator to combine X,Y,Z vorticity field into a single vector field using the calculator. Take a slice of it and do a glyph filter visualizing all points on the plane.
I notice that one possible way is to visualize a curved glyphs and scale up a little bit to make it more noticeable, but not sure how to do that. Does anyone know whats the steps to do that? Or any other suggestions?
TIA
Have you tried reducing the Maximum Number of Sample Points property in the Properties Panel when the Glyph filter is selected in the Pipeline Browser? You may also want to change the Scale Factor property to change the length of the glyphs.

Exchange phase of 2 image's fft and reconstruct [duplicate]

I'm using MATLAB for image processing and I came across a code with the instruction:
imshow(pixel_labels,[]);
when executed it give a binary image.
I have check the manual of the function on Mathworks.com, the most similar used mode is
imshow(I,[low,high]);
but they don't say a thing about the case where that array is empty ([])
I tried to remove it:
imshow(pixel_labels);
but all I see is a white board. I would like to know what is happening in the first use case (imshow(pixel_labels,[])), I hope from there I will understand why I get a white board in the last use case.
If I type help imshow in MATLAB, the first paragraph reads:
IMSHOW(I,[LOW HIGH]) displays the grayscale image I, specifying the
display
range for I in [LOW HIGH]. The value LOW (and any value less than LOW)
displays as black, the value HIGH (and any value greater than HIGH) displays
as white. Values in between are displayed as intermediate shades of gray,
using the default number of gray levels. If you use an empty matrix ([]) for
[LOW HIGH], IMSHOW uses [min(I(:)) max(I(:))]; that is, the minimum value in
I is displayed as black, and the maximum value is displayed as white.
so [] is simply shorthand for [min(pixel_labels(:)) max(pixel_labels(:))].

artifacts in processed images

This question is related to my previous post Image Processing Algorithm in Matlab in stackoverflow, which I already got the results that I wanted to.
But now I am facing another problem, and getting some artefacts in the process images. In my original images (stack of 600 images) I can't see any artefacts, please see the original image from finger nail:
But in my 10 processed results I can see these lines:
I really don't know where they come from?
Also if they belong to the camera's sensor why can't I see them in my original images? Any idea?
Edit:
I have added the following code suggested by #Jonas. It reduces the artefact, but does not completely remove them.
%averaging of images
im = D{1}(:,:);
for i = 2:100
im = imadd(im,D{i}(:,:));
end
im = im/100;
imshow(im,[]);
for i=1:100
SD{i}(:,:)=imsubtract(D{i}(:,:),im(:,:))
end
#belisarius has asked for more images, so I am going to upload 4 images from my finger with speckle pattern and 4 images from black background size( 1280x1024 ):
And here is the black background:
Your artifacts are in fact present in your original image, although not visible.
Code in Mathematica:
i = Import#"http://i.stack.imgur.com/5hM3u.png"
EntropyFilter[i, 1]
The lines are faint, but you can see them by binarization with a very low level threshold:
Binarize[i, .001]
As for what is causing them, I can only speculate. I would start tracing from the camera output itself. Also, you may post two or three images "as they come straight from the camera" to allow us some experimenting.
The camera you're using is most likely has a CMOS chip. Since they have independent column (and possibly row) amplifiers, which may have slightly different electronic properties, you can get the signal from one column more amplified than from another.
Depending on the camera, these variability in column intensity can be stable. In that case, you're in luck: Take ~100 dark images (tape something over the lens), average them, and then subtract them from each image before running the analysis. This should make the lines disappear. If the lines do not disappear (or if there are additional lines), use the post-processing scheme proposed by Amro to remove the lines after binarization.
EDIT
Here's how you'd do the background subtraction, assuming that you have taken 100 dark images and stored them in a cell array D with 100 elements:
% take the mean; convert to double for safety reasons
meanImg = mean( double( cat(3,D{:}) ), 3);
% then you cans subtract the mean from the original (non-dark-frame) image
correctedImage = rawImage - meanImg; %(maybe you need to re-cast the meanImg first)
Here is an answer that in opinion will remove the lines more gently than the above mentioned methods:
im = imread('image.png'); % Original image
imFiltered = im; % The filtered image will end up here
imChanged = false(size(im));% To document the filter performance
% 1)
% Compute the histgrams for each column in the lower part of the image
% (where the columns are most clear) and compute the mean and std each
% bin in the histogram.
histograms = hist(double(im(501:520,:)),0:255);
colMean = mean(histograms,2);
colStd = std(histograms,0,2);
% 2)
% Now loop though each gray level above zero and...
for grayLevel = 1:255
% Find the columns where the number of 'graylevel' pixels is larger than
% mean_n_graylevel + 3*std_n_graylevel). - That is columns that contains
% statistically 'many' pixel with the current 'graylevel'.
lineColumns = find(histograms(grayLevel+1,:)>colMean(grayLevel+1)+3*colStd(grayLevel+1));
% Now remove all graylevel pixels in lineColumns in the original image
if(~isempty(lineColumns))
for col = lineColumns
imFiltered(:,col) = im(:,col).*uint8(~(im(:,col)==grayLevel));
imChanged(:,col) = im(:,col)==grayLevel;
end
end
end
imshow(imChanged)
figure,imshow(imFiltered)
Here is the image after filtering
And this shows the pixels affected by the filter
You could use some sort of morphological opening to remove the thin vertical lines:
img = imread('image.png');
SE = strel('line',2,0);
img2 = imdilate(imerode(img,SE),SE);
subplot(121), imshow(img)
subplot(122), imshow(img2)
The structuring element used was:
>> SE.getnhood
ans =
1 1 1
Without really digging into your image processing, I can think of two reasons for this to happen:
The processing introduced these artifacts. This is unlikely, but it's an option. Check your algorithm and your code.
This is a side-effect because your processing reduced the dynamic range of the picture, just like quantization. So in fact, these artifacts may have already been in the picture itself prior to the processing, but they couldn't be noticed because their level was very close to the background level.
As for the source of these artifacts, it might even be the camera itself.
This is a VERY interesting question. I used to deal with this type of problem with live IR imagers (video systems). We actually had algorithms built into the cameras to deal with this problem prior to the user ever seeing or getting their hands on the image. Couple questions:
1) are you dealing with RAW images or are you dealing with already pre-processed grayscale (or RGB) images?
2) what is your ultimate goal with these images. Is the goal to simply get rid of the lines regardless of the quality in the rest of the image that results, or is the point to preserve the absolute best image quality. Are you to perform other processing afterwards?
I agree that those lines are most likely in ALL of your images. There are 2 reasons for those lines ever showing up in an image, one would be in a bright scene where OP AMPs for columns get saturated, thus causing whole columns of your image to get the brightest value camera can output. Another reason could be bad OP AMPs or ADCs (Analog to Digital Converters) themselves (Most likely not an ADC as normally there is essentially 1 ADC for th whole sensor, which would make the whole image bad, not your case). The saturation case is actually much more difficult to deal with (and I don't think this is your problem). Note: Too much saturation on a sensor can cause bad pixels and columns to arise in your sensor (which is why they say never to point your camera at the sun). The bad column problem can be dealt with. Above in another answer, someone had you averaging images. While this may be good to find out where the bad columns (or bad single pixels, or the noise matrix of your sensor) are (and you would have to average pointing the camera at black, white, essentially solid colors), it isn't the correct answer to get rid of them. By the way, what I am explaining with the black and white and averaging, and finding bad pixels, etc... is called calibrating your sensor.
OK, so saying you are able to get this calibration data, then you WILL be able to find out which columns are bad, even single pixels.
If you have this data, one way that you could erase the columns out is to:
for each bad column
for each pixel (x, y) on the bad column
pixel(x, y) = Average(pixel(x+1,y),pixel(x+1,y-1),pixel(x+1,y+1),
pixel(x-1,y),pixel(x-1,y-1),pixel(x-1,y+1))
What this essentially does is replace the bad pixel with a new pixel which is the average of the 6 remaining good pixels around it. The above is an over-simplified version of an algorithm. There are certainly cases where a singly bad pixel could be right next the bad column and shouldn't be used for averaging, or two or three bad columns right next to each other. One could imagine that you would calculate the values for a bad column, then consider that column good in order to move on to the next bad column, etc....
Now, the reason I asked about the RAW versus B/W or RGB. If you were processing a RAW, depending on the build of the sensor itself, it could be that only one sub-pixel (if you will) of the bayer filtered image sensor has the bad OP AMP. If you could detect this, then you wouldn't necessarily have to throw out the other good sub-pixel's data. Secondarily, if you are using an RGB sensor, to take a grayscale photo, and you shot it in RAW, then you may be able to calculate your own grayscale pixels. Many sensors when giving back a grayscale image when using an RGB sensor, will simply pass back the Green pixel as the overall pixel. This is due to the fact that it really serves as the luminescence of an image. This is why most image sensors implement 2 green sub-pixels for every r or g sub-pixel. If this is what they are doing (not ALL sensors do this) then you may have better luck getting rid of just the bad channel column, and performing your own grayscale conversion using.
gray = (0.299*r + 0.587*g + 0.114*b)
Apologies for the long winded answer, but I hope this is still informational to someone :-)
Since you can not see the lines in the original image, they are either there with low intensity difference in comparison with original range of image, or added by your processing algorithm.
The shape of the disturbance hints to the first option... (Unless you have an algorithm that processes each row separately.)
It seems like your sensor's columns are not uniform, try taking a picture without the finger (background only) using the same exposure (and other) settings, then subtracting it from the photo of the finger (prior to other processing). (Make sure the background is uniform before taking both images.)

Count black spots in an image - iPhone - Objective C

I need to count the number of black spots in an image(Not the percentage of black spots but the count). Can anyone suggest a step wise procedure that is used in image manipulation to count the spots.
Objective : Count black spots in an image
What I've done till now :
1. Converted image to grayscale
2. Read the pixels for their intensity values
3. I have set a threshold to find darker areas
Other implementations:
1. Gaussian blur
2. Histogram equalisations
What i have browsed :
Flood fill algorithms, Water shed algorithms
Thanks a lot..
you should first "label" the image, then count the number of labels you have found.
the label operation is the first operation done in a blob analysis operation: it groups similar adjacent pixels into a single object, and assign a value to this object. the condition for grouping generally is a background/foreground distinction: the label operation will group adjacent pixels which are part of the foreground, where background is defined as pure black or pure white, and foreground is any pixel whose color is not the color of the background.
the label operation is pretty easy to implement and requires not much resources.
_(see the wikipedia article, or this page for more information on labelling. a good paper on the implementation of the label operation is "Two Strategies to Speed up Connected Component Labeling Algorithms" by Kesheng Wu, Ekow Otoo and Kenji Suzuki)_
after labelling, count the number of labels (you can even count the labels while labelling), and you have the number of "black spots".
the next step is defining what a black spot is: converting your input image into a grayscale image (by converting it to HSL and using the luminance plane for example) then applying a threshold should do it. if the illumination of your input image is not even, you may need a better thresholding algorithm (a form of adaptive threshold)...
It sounds like you want to label the black spots (Blobs) using a binary image labelling algorithm. This should give you a place to start