I would like to delete ($pull) nested array elements where one of the element's properties is null and where the array has more than one element.
Here is an example. In the following collection, I would like to delete those elements of the Orders array that have Amount = null and where the Orders array has more than one element. That is, I would like to delete only the element with OrderId = 12, but no other elements.
db.TestProducts.insertMany([
{
ProductDetails: { "ProductId": 1, Language: "fr" },
Orders: [
{ "OrderId": 11, "Amount": 200 },
{ "OrderId": 12, "Amount": null }
]
},
{
ProductDetails: { "ProductId": 2, Language: "es" },
Orders: [
{ "OrderId": 13, "Amount": 300 },
{ "OrderId": 14, "Amount": 400 }
]
},
{
ProductDetails: { "ProductId": 3, Language: "en" },
Orders: [
{ "OrderId": 15, "Amount": null }
]
}
]);
The following attempt is based on googling and a combination of a few other StackOverflow answers, e.g. Aggregate and update MongoDB
db.TestProducts.aggregate(
[
{ $match: { "Orders.Amount": { "$eq": null } } },
{ $unwind: "$Orders" },
{
"$group": {
"_id": {
ProductId: "$ProductDetails.ProductId",
Language: "$ProductDetails.Language"
},"count": { "$sum": 1 }
}
},
{ "$match": { "count": { "$gt": 1 } } },
{ "$out": "temp_results" }
],
{ allowDiskUse: true}
);
db.temp_results.find().forEach((result) => {
db.TestProducts.updateMany({"ProductDetails.ProductId": result._id.ProductId, "ProductDetails.Language": result._id.Language },
{ $pull: { "Orders": {"Amount": null } }})
});
This works, but I am wondering if it can be done in a simpler way, especially if it is possible to delete the array elements within the aggregation pipeline and avoid the additional iteration (forEach).
You can check these conditions in the update query, check 2 conditions
Amount is null
check the expression $expr condition for the size of the Orders array is greater than 1
db.TestProducts.updateMany({
"Orders.Amount": null,
"$expr": {
"$gt": [{ "$size": "$Orders" }, 1]
}
},
{
"$pull": {
"Orders": { "Amount": null }
}
})
Playground
an example
an example might help:
let feed = await Feed.findOneAndUpdate(
{
_id: req.params.id,
feeds: {
$elemMatch: {
type: FeedType.Location,
locations: {
$size: 0,
},
},
},
},
{
$pull: {
feeds: { locations: { $size: 0 }, type: FeedType.Location },
},
},
{ new: true, multi: true }
);
I have an aggregation that looks like this:
userSchema.statics.getCounts = function (req, type) {
return this.aggregate([
{ $match: { organization: req.user.organization._id } },
{
$lookup: {
from: 'tickets', localField: `${type}Tickets`, foreignField: '_id', as: `${type}_tickets`,
},
},
{ $unwind: `$${type}_tickets` },
{ $match: { [`${type}_tickets.createdAt`]: { $gte: new Date(moment().subtract(4, 'd').startOf('day').utc()), $lt: new Date(moment().endOf('day').utc()) } } },
{
$group: {
_id: {
groupDate: {
$dateFromParts: {
year: { $year: `$${type}_tickets.createdAt` },
month: { $month: `$${type}_tickets.createdAt` },
day: { $dayOfMonth: `$${type}_tickets.createdAt` },
},
},
userId: `$${type}_tickets.assignee_id`,
},
ticketCount: {
$sum: 1,
},
},
},
{
$sort: { '_id.groupDate': -1 },
},
{ $group: { _id: '$_id.userId', data: { $push: { groupDate: '$_id.groupDate', ticketCount: '$ticketCount' } } } },
]);
};
Which outputs data like this:
[
{
_id: 5aeb6b71709f43359e0888bb,
data: [
{ "groupDate": 2018-05-07T00:00:000Z", ticketCount: 4 }
}
]
Ideally though, I would have data like this:
[
{
_id: 5aeb6b71709f43359e0888bb,
data: [
{ "groupDate": 2018-05-07T00:00:000Z", assignedCount: 4, resolvedCount: 8 }
}
]
The difference being that the object for the user would output both the total number of assigned tickets and the total number of resolved tickets for each date.
My userSchema is like this:
const userSchema = new Schema({
firstName: String,
lastName: String,
assignedTickets: [
{
type: mongoose.Schema.ObjectId,
ref: 'Ticket',
index: true,
},
],
resolvedTickets: [
{
type: mongoose.Schema.ObjectId,
ref: 'Ticket',
index: true,
},
],
}, {
timestamps: true,
});
An example user doc is like this:
{
"_id": "5aeb6b71709f43359e0888bb",
"assignedTickets": ["5aeb6ba7709f43359e0888bd", "5aeb6bf3709f43359e0888c2", "5aec7e0adcdd76b57af9e889"],
"resolvedTickets": ["5aeb6bc2709f43359e0888be", "5aeb6bc2709f43359e0888bf"],
"firstName": "Name",
"lastName": "Surname",
}
An example ticket doc is like this:
{
"_id": "5aeb6ba7709f43359e0888bd",
"ticket_id": 120292,
"type": "assigned",
"status": "Pending",
"assignee_email": "email#gmail.com",
"assignee_id": "5aeb6b71709f43359e0888bb",
"createdAt": "2018-05-02T20:05:59.147Z",
"updatedAt": "2018-05-03T20:05:59.147Z",
}
I've tried adding multiple lookups and group stages, but I keep getting an empty array. If I only do one lookup and one group, I get the correct counts for the searched on field, but I'd like to have both fields in one query. Is it possible to have the query group on two lookups?
In short you seem to be coming to terms with setting up your models in mongoose and have gone overboard with references. In reality you really should not keep the arrays within the "User" documents. This is actually an "anti-pattern" which was just something mongoose used initially as a convention for keeping "references" for population where it did not understand how to translate the references from being kept in the "child" to the "parent" instead.
You actually have that data in each "Ticket" and the natural form of $lookup is to use that "foreignField" in reference to the detail from the local collection. In this case the "assignee_id" on the tickets will suffice for looking at matching back to the "_id" of the "User". Though you don't state it, your "status" should be an indicator of whether the data is actually either "assigned" as when in "Pending" state or "resolved" when it is not.
For the sake of simplicity we are going to consider the state "resolved" if it is anything other than "Pending" in value, but extending on the logic from the example for actual needs is not the problem here.
Basically then we resolve to a single $lookup operation by actually using the natural "foreign key" as opposed to keeping separate arrays.
MongoDB 3.6 and greater
Ideally you would use features from MongoDB 3.6 with sub-pipeline processing here:
// Better date calculations
const oneDay = (1000 * 60 * 60 * 24);
var now = Date.now(),
end = new Date((now - (now % oneDay)) + oneDay),
start = new Date(end.valueOf() - (4 * oneDay));
User.aggregate([
{ "$match": { "organization": req.user.organization._id } },
{ "$lookup": {
"from": Ticket.collection.name,
"let": { "id": "$_id" },
"pipeline": [
{ "$match": {
"createdAt": { "$gte": start, "$lt": end },
"$expr": {
"$eq": [ "$$id", "$assignee_id" ]
}
}},
{ "$group": {
"_id": {
"status": "$status",
"date": {
"$dateFromParts": {
"year": { "$year": "$createdAt" },
"month": { "$month": "$createdAt" },
"day": { "$dayOfMonth": "$createdAt" }
}
}
},
"count": { "$sum": 1 }
}},
{ "$group": {
"_id": "$_id.date",
"data": {
"$push": {
"k": {
"$cond": [
{ "$eq": ["$_id.status", "Pending"] },
"assignedCount",
"resolvedCount"
]
},
"v": "$count"
}
}
}},
{ "$sort": { "_id": -1 } },
{ "$replaceRoot": {
"newRoot": {
"$mergeObjects": [
{ "groupDate": "$_id", "assignedCount": 0, "resolvedCount": 0 },
{ "$arrayToObject": "$data" }
]
}
}}
],
"as": "data"
}},
{ "$project": { "data": 1 } }
])
From MongoDB 3.0 and upwards
Or where you lack those features we use a different pipeline process and a little data transformation after the results are returned from the server:
User.aggregate([
{ "$match": { "organization": req.user.organization._id } },
{ "$lookup": {
"from": Ticket.collection.name,
"localField": "_id",
"foreignField": "assignee_id",
"as": "data"
}},
{ "$unwind": "$data" },
{ "$match": {
"data.createdAt": { "$gte": start, "$lt": end }
}},
{ "$group": {
"_id": {
"userId": "$_id",
"date": {
"$add": [
{ "$subtract": [
{ "$subtract": [ "$data.createdAt", new Date(0) ] },
{ "$mod": [
{ "$subtract": [ "$data.createdAt", new Date(0) ] },
oneDay
]}
]},
new Date(0)
]
},
"status": "$data.status"
},
"count": { "$sum": 1 }
}},
{ "$group": {
"_id": {
"userId": "$_id.userId",
"date": "$_id.date"
},
"data": {
"$push": {
"k": {
"$cond": [
{ "$eq": [ "$_id.status", "Pending" ] },
"assignedCount",
"resolvedCount"
]
},
"v": "$count"
}
}
}},
{ "$sort": { "_id.userId": 1, "_id.date": -1 } },
{ "$group": {
"_id": "$_id.userId",
"data": {
"$push": {
"groupDate": "$_id.date",
"data": "$data"
}
}
}}
])
.then( results =>
results.map( ({ data, ...d }) =>
({
...d,
data: data.map(di =>
({
groupDate: di.groupDate,
assignedCount: 0,
resolvedCount: 0,
...di.data.reduce((acc,curr) => ({ ...acc, [curr.k]: curr.v }),{})
})
)
})
)
)
Which just really goes to show that even with the fancy features in modern releases, you really don't need them because there pretty much has always been ways to work around this. Even the JavaScript parts just had slightly longer winded versions before the current "object spread" syntax was available.
So that is really the direction you need to go in. What you certainly don't want is using "multiple" $lookup stages or even applying $filter conditions on what could potentially be large arrays. Also both forms here do their best to "filter down" the number of items "joined" from the foreign collection so as not to cause a breach of the BSON limit.
Particularly the "pre 3.6" version actually has a trick where $lookup + $unwind + $match occur in succession which you can see in the explain output. All stages actually combine into "one" stage there which solely returns only the items which match the conditions in the $match from the foreign collection. Keeping things "unwound" until we reduce further avoids BSON limit problems, as does the new form with MongoDB 3.6 where the "sub-pipeline" does all the document reduction and grouping before any results are returned.
Your one document sample would return like this:
{
"_id" : ObjectId("5aeb6b71709f43359e0888bb"),
"data" : [
{
"groupDate" : ISODate("2018-05-02T00:00:00Z"),
"assignedCount" : 1,
"resolvedCount" : 0
}
]
}
Once I expand the date selection to include that date, which of course the date selection can also be improved and corrected from your original form.
So it seems to make sense that your relationships are actually defined that way but it's just that you recorded them "twice". You don't need to and even if that's not the definition then you should actually instead record on the "child" rather than an array in the parent. We can juggle and merge the parent arrays, but that's counterproductive to actually establishing the data relations correctly and using them correctly as well.
How about something like this?
db.users.aggregate([
{
$lookup:{ // lookup assigned tickets
from:'tickets',
localField:'assignedTickets',
foreignField:'_id',
as:'assigned',
}
},
{
$lookup:{ // lookup resolved tickets
from:'tickets',
localField:'resolvedTickets',
foreignField:'_id',
as:'resolved',
}
},
{
$project:{
"tickets":{ // merge all tickets into one single array
$concatArrays:[
"$assigned",
"$resolved"
]
}
}
},
{
$unwind:'$tickets' // flatten the 'tickets' array into separate documents
},
{
$group:{ // group by 'createdAt' and 'assignee_id'
_id:{
groupDate:{
$dateFromParts:{
year:{ $year:'$tickets.createdAt' },
month:{ $month:'$tickets.createdAt' },
day:{ $dayOfMonth:'$tickets.createdAt' },
},
},
userId:'$tickets.assignee_id',
},
assignedCount:{ // get the count of assigned tickets
$sum:{
$cond:[
{ // by checking the 'type' field for a value of 'assigned'
$eq:[
'$tickets.type',
'assigned'
]
},
1, // if matching count 1
0 // else 0
]
}
},
resolvedCount:{
$sum:{
$cond:[
{ // by checking the 'type' field for a value of 'resolved'
$eq:[
'$tickets.type',
'resolved'
]
},
1, // if matching count 1
0 // else 0
]
}
},
},
},
{
$sort:{ // sort by 'groupDate' descending
'_id.groupDate':-1
},
},
{
$group:{
_id:'$_id.userId', // group again but only by userId
data:{
$push:{ // create an array
groupDate:'$_id.groupDate',
assignedCount:{
$sum:'$assignedCount'
},
resolvedCount:{
$sum:'$resolvedCount'
}
}
}
}
}
])
I have a mongoose Group schema which contains invitee (array of sub document) and currentMove, invitee also contains currentMove and I want to get document with only sub document that have same currentMove.
Group.findById("5a03fa29fafa645c8a399353")
.populate({
path: 'invitee.user_id',
select: 'currentMove',
model:"User",
match: {
"currentMove":{
$eq: "$currentMove"
}
}
})
This generates unknown currentMove Object id for match query. I'm not sure if mongoose has this functionality. Can anyone help me, please?
In modern MongoDB releases it is far more efficient to use $lookup here instead of .populate(). Also the basic concept that you want to filter based on a comparison of fields is something that MongoDB does quite well with native operators, but it's not something you can easily transpose into .populate().
In fact the only way possible to actually use with .populate() would be to first retrieve all results, and then use Model.populate() with a $where clause on query all whilst processing the result array with Array.map() in order to apply the local value of each document to the conditions to "join" on.
It's all kind of messy, and involves pulling all results from the server and filtering locally. So $lookup is our best option here, where all of the "filtering" and "matching" actually takes place on the server without needing to pull unnecessary documents over the network just to obtain a result.
Sample Schema
You don't actually include a "schema" in your question, so we can only work with an approximation based on what parts you actually do include in the question. So my example here uses:
const userSchema = new Schema({
name: String,
currentMove: Number
})
const groupSchema = new Schema({
name: String,
topic: String,
currentMove: Number,
invitee: [{
user_id: { type: Schema.Types.ObjectId, ref: 'User' },
confirmed: { type: Boolean, default: false }
}]
});
Unwinding $lookup and $group
From here we have different approaches to the $lookup queries. The first basically involves applying $unwind both before and after the $lookup stage. This is partly since your "reference" is an embedded field within the array, and also partly because it's actually the most efficient query form to use here with a possible "join" result that could potentially exceed the BSON limit ( 16MB for the document ) being avoided:
Group.aggregate([
{ "$unwind": "$invitee" },
{ "$lookup": {
"from": User.collection.name,
"localField": "invitee.user_id",
"foreignField": "_id",
"as": "invitee.user_id"
}},
{ "$unwind": "$invitee.user_id" },
{ "$redact": {
"$cond": {
"if": { "$eq": ["$currentMove", "$invitee.user_id.currentMove"] },
"then": "$$KEEP",
"else": "$$PRUNE"
}
}},
{ "$group": {
"_id": "$_id",
"name": { "$first": "$name" },
"topic": { "$first": "$topic" },
"currentMove": { "$first": "$currentMove" },
"invitee": { "$push": "$invitee" }
}}
]);
The key expression here is the $redact which is processed after the $lookup result is returned. This allows a logical comparison of the "currentMove" values from both the parent document and the "joined" detail for the User objects.
Since we $unwind the array content, we use $group with $push to reconstruct the array ( if you must ) and select the other fields of the original document using $first.
There are ways to examine the schema and generate such a stage, but that's not really in the scope of the question. An example can be seen on Querying after populate in Mongoose. Point being that if you want the fields returned, then you would construct this pipeline stage around using those expressions to return a document of the original shape.
Filter $lookup result
An alternate approach where you are certain that the "unfiltered" result of the "join" will not cause the document to exceed the BSON limit is to instead make a separate target array, and then reconstruct your "joined" array content using $map and $filter, and other array operators:
Group.aggregate([
{ "$lookup": {
"from": User.collection.name,
"localField": "invitee.user_id",
"foreignField": "_id",
"as": "inviteeT"
}},
{ "$addFields": {
"invitee": {
"$map": {
"input": {
"$filter": {
"input": "$inviteeT",
"as": "i",
"cond": { "$eq": ["$$i.currentMove","$currentMove"] }
}
},
"as": "i",
"in": {
"_id": {
"$arrayElemAt": [
"$invitee._id",
{ "$indexOfArray": ["$invitee.user_id", "$$i._id"] }
]
},
"user_id": "$$i",
"confirmed": {
"$arrayElemAt": [
"$invitee.confirmed",
{ "$indexOfArray": ["$invitee.user_id","$$i._id"] }
]
}
}
}
}
}},
{ "$project": { "inviteeT": 0 } },
{ "$match": { "invitee.0": { "$exists": true } } }
]);
Instead of the $redact which would be filtering "documents", we use $filter here with the expression to only return those members of the target array "inviteeT" which share the same "currentMove". Since this is just the "foreign" content, we "join" with the original array using $map and transposing the elements.
To do that "transposition" of values from the original array, we use the $arrayElemAt and $indexOfArray expressions. The $indexOfArray allows us to match up the target's "_id" values with the "user_id" values in the original array and get it's "index" position. We always know this returns a real match because the $lookup did that part for us.
The "index" value is then supplied to $arrayElemAt which similarly applies a "mapping" of the values as an array like "$invitee.confirmed" and returns the value matched at the same index. This is basically a "lookup" between the arrays.
Differing from the first pipeline example, we now still have the "inviteeT" array as well as our re-written "invitee" array courtesy of $addFields. So one way to get rid of that is to add an additional $project and exclude the unwanted "temporary" array. And of course since we did not $unwind and "filter", there are still possible results with no matching array entries at all. So the $match expression uses $exists to test for the 0 index being present in the array result, which means there is "at least one" result, and discards any documents with empty arrays.
MongoDB 3.6 "sub-query"
MongoDB 3.6 makes this a bit cleaner as a new syntax for $lookup allows a more expressive "pipeline" to be given in argument to select the results returned, rather than the simplistic "localField" and "foreignField" matching.
Group.aggregate([
{ "$lookup": {
"from": User.collection.name,
"let": {
"ids": "$invitee._id",
"users": "$invitee.user_id",
"confirmed": "$invitee.confirmed",
"currentMove": "$currentMove"
},
"pipeline": [
{ "$match": {
"$expr": {
"$and": [
{ "$in": ["$_id", "$$users"] },
{ "$eq": ["$currentMove", "$$currentMove"] }
]
}
}},
{ "$project": {
"_id": {
"$arrayElemAt": [
"$$ids",
{ "$indexOfArray": ["$$users", "$_id"] }
]
},
"user_id": "$$ROOT",
"confirmed": {
"$arrayElemAt": [
"$$confirmed",
{ "$indexOfArray": ["$$users", "$_id"] }
]
}
}}
],
"as": "invitee"
}},
{ "$match": { "invitee.0": { "$exists": true } } }
])
So there are some slightly "glitchy" things in there with the usage of mapping arrays of specific values for input due to how these are currently passed into the sub-pipeline via the "let" declaration. This should probably work cleaner, but on the current release candidate this is how it's actually required to be expressed in order to work.
With this new syntax the "let" allows us to declare "variables" from the current document which can then be referenced in the "pipeline" expression which will be executed in order to determine which results to return to the target array.
The $expr here essentially replaces the $redact or $filter conditions used before, as well as combining the "local" to "foreign" key matching which also requires us to declare such a variable. Here we mapped the "$invitee.user_id" values from the source document into a variable which we refer to as "$$users" in the rest of the expressions.
The $in operator here is a variant for the aggregation framework which returns a boolean condition where the first argument "value" is found in the second argument "array". So this is the "foreign key" filter part.
Since this is a "pipeline", we can add a $project stage in addition to the $match which selected the items from the foreign collection. So again we use a similar "transposition" technique to what was described before. This then gives us control of the "shape" of the documents returned in the array, so we don't manipulate the returned array "after" the $lookup like we did previously.
The same case applies though, since no matter what you do here the "sub-pipeline" can of course return no results when the filter conditions do not match. So again the same $exists test is used to discard those documents.
So it's all pretty cool, and once you get used to the power available in the server side "join" functionality of $lookup you likely will never look back. Whilst the syntax is a lot more terse than the "convenience" function that .populate() was introduced for, the reduced traffic load, far more advanced uses and general expressiveness basically make up for that.
As a complete example, I'm also including a self contained listing that demonstrates all of these. And if you run it with a MongoDB 3.6 compatible server attached, then you will even get that demonstration as well.
Needs a recent Node.js v8.x release to run with async/await ( or enable in other supported ), but since that's now the LTS release you really should be running that anyway. At least install one to test :)
const mongoose = require('mongoose'),
Schema = mongoose.Schema;
mongoose.Promise = global.Promise;
mongoose.set('debug',true);
const uri = 'mongodb://localhost/rollgroup',
options = { useMongoClient: true };
const userSchema = new Schema({
name: String,
currentMove: Number
})
const groupSchema = new Schema({
name: String,
topic: String,
currentMove: Number,
invitee: [{
user_id: { type: Schema.Types.ObjectId, ref: 'User' },
confirmed: { type: Boolean, default: false }
}]
});
const User = mongoose.model('User', userSchema);
const Group = mongoose.model('Group', groupSchema);
function log(data) {
console.log(JSON.stringify(data, undefined, 2))
}
(async function() {
try {
const conn = await mongoose.connect(uri,options);
let { version } = await conn.db.admin().command({'buildInfo': 1});
// Clean data
await Promise.all(
Object.entries(conn.models).map(([k,m]) => m.remove() )
);
// Add some users
let users = await User.insertMany([
{ name: 'Bill', currentMove: 1 },
{ name: 'Ted', currentMove: 2 },
{ name: 'Fred', currentMove: 3 },
{ name: 'Sally', currentMove: 4 },
{ name: 'Harry', currentMove: 5 }
]);
await Group.create({
name: 'Group1',
topic: 'This stuff',
currentMove: 3,
invitee: users.map( u =>
({ user_id: u._id, confirmed: (u.currentMove === 3) })
)
});
await (async function() {
console.log('Unwinding example');
let result = await Group.aggregate([
{ "$unwind": "$invitee" },
{ "$lookup": {
"from": User.collection.name,
"localField": "invitee.user_id",
"foreignField": "_id",
"as": "invitee.user_id"
}},
{ "$unwind": "$invitee.user_id" },
{ "$redact": {
"$cond": {
"if": { "$eq": ["$currentMove", "$invitee.user_id.currentMove"] },
"then": "$$KEEP",
"else": "$$PRUNE"
}
}},
{ "$group": {
"_id": "$_id",
"name": { "$first": "$name" },
"topic": { "$first": "$topic" },
"currentMove": { "$first": "$currentMove" },
"invitee": { "$push": "$invitee" }
}}
]);
log(result);
})();
await (async function() {
console.log('Using $filter example');
let result = await Group.aggregate([
{ "$lookup": {
"from": User.collection.name,
"localField": "invitee.user_id",
"foreignField": "_id",
"as": "inviteeT"
}},
{ "$addFields": {
"invitee": {
"$map": {
"input": {
"$filter": {
"input": "$inviteeT",
"as": "i",
"cond": { "$eq": ["$$i.currentMove","$currentMove"] }
}
},
"as": "i",
"in": {
"_id": {
"$arrayElemAt": [
"$invitee._id",
{ "$indexOfArray": ["$invitee.user_id", "$$i._id"] }
]
},
"user_id": "$$i",
"confirmed": {
"$arrayElemAt": [
"$invitee.confirmed",
{ "$indexOfArray": ["$invitee.user_id","$$i._id"] }
]
}
}
}
}
}},
{ "$project": { "inviteeT": 0 } },
{ "$match": { "invitee.0": { "$exists": true } } }
]);
log(result);
})();
await (async function() {
if (parseFloat(version.match(/\d\.\d/)[0]) >= 3.6) {
console.log('New $lookup example. Yay!');
let result = await Group.collection.aggregate([
{ "$lookup": {
"from": User.collection.name,
"let": {
"ids": "$invitee._id",
"users": "$invitee.user_id",
"confirmed": "$invitee.confirmed",
"currentMove": "$currentMove"
},
"pipeline": [
{ "$match": {
"$expr": {
"$and": [
{ "$in": ["$_id", "$$users"] },
{ "$eq": ["$currentMove", "$$currentMove"] }
]
}
}},
{ "$project": {
"_id": {
"$arrayElemAt": [
"$$ids",
{ "$indexOfArray": ["$$users", "$_id"] }
]
},
"user_id": "$$ROOT",
"confirmed": {
"$arrayElemAt": [
"$$confirmed",
{ "$indexOfArray": ["$$users", "$_id"] }
]
}
}}
],
"as": "invitee"
}},
{ "$match": { "invitee.0": { "$exists": true } } }
]).toArray();
log(result);
}
})();
await (async function() {
console.log("Horrible populate example :(");
let results = await Group.find();
results = await Promise.all(
results.map( r =>
User.populate(r,{
path: 'invitee.user_id',
match: { "$where": `this.currentMove === ${r.currentMove}` }
})
)
);
console.log("All members still there");
log(results);
// Then we clean it for null values
results = results.map( r =>
Object.assign(r,{
invitee: r.invitee.filter(i => i.user_id !== null)
})
);
console.log("Now they are filtered");
log(results);
})();
} catch(e) {
console.error(e);
} finally {
mongoose.disconnect();
}
})()
Gives the output for each example as:
Mongoose: users.remove({}, {})
Mongoose: groups.remove({}, {})
Mongoose: users.insertMany([ { __v: 0, name: 'Bill', currentMove: 1, _id: 5a0afda01643cf41789e500a }, { __v: 0, name: 'Ted', currentMove: 2, _id: 5a0afda01643cf41789e500b }, { __v: 0, name: 'Fred', currentMove: 3, _id: 5a0afda01643cf41789e500c }, { __v: 0, name: 'Sally', currentMove: 4, _id: 5a0afda01643cf41789e500d }, { __v: 0, name: 'Harry', currentMove: 5, _id: 5a0afda01643cf41789e500e } ], {})
Mongoose: groups.insert({ name: 'Group1', topic: 'This stuff', currentMove: 3, _id: ObjectId("5a0afda01643cf41789e500f"), invitee: [ { user_id: ObjectId("5a0afda01643cf41789e500a"), _id: ObjectId("5a0afda01643cf41789e5014"), confirmed: false }, { user_id: ObjectId("5a0afda01643cf41789e500b"), _id: ObjectId("5a0afda01643cf41789e5013"), confirmed: false }, { user_id: ObjectId("5a0afda01643cf41789e500c"), _id: ObjectId("5a0afda01643cf41789e5012"), confirmed: true }, { user_id: ObjectId("5a0afda01643cf41789e500d"), _id: ObjectId("5a0afda01643cf41789e5011"), confirmed: false }, { user_id: ObjectId("5a0afda01643cf41789e500e"), _id: ObjectId("5a0afda01643cf41789e5010"), confirmed: false } ], __v: 0 })
Unwinding example
Mongoose: groups.aggregate([ { '$unwind': '$invitee' }, { '$lookup': { from: 'users', localField: 'invitee.user_id', foreignField: '_id', as: 'invitee.user_id' } }, { '$unwind': '$invitee.user_id' }, { '$redact': { '$cond': { if: { '$eq': [ '$currentMove', '$invitee.user_id.currentMove' ] }, then: '$$KEEP', else: '$$PRUNE' } } }, { '$group': { _id: '$_id', name: { '$first': '$name' }, topic: { '$first': '$topic' }, currentMove: { '$first': '$currentMove' }, invitee: { '$push': '$invitee' } } } ], {})
[
{
"_id": "5a0afda01643cf41789e500f",
"name": "Group1",
"topic": "This stuff",
"currentMove": 3,
"invitee": [
{
"user_id": {
"_id": "5a0afda01643cf41789e500c",
"__v": 0,
"name": "Fred",
"currentMove": 3
},
"_id": "5a0afda01643cf41789e5012",
"confirmed": true
}
]
}
]
Using $filter example
Mongoose: groups.aggregate([ { '$lookup': { from: 'users', localField: 'invitee.user_id', foreignField: '_id', as: 'inviteeT' } }, { '$addFields': { invitee: { '$map': { input: { '$filter': { input: '$inviteeT', as: 'i', cond: { '$eq': [ '$$i.currentMove', '$currentMove' ] } } }, as: 'i', in: { _id: { '$arrayElemAt': [ '$invitee._id', { '$indexOfArray': [ '$invitee.user_id', '$$i._id' ] } ] }, user_id: '$$i', confirmed: { '$arrayElemAt': [ '$invitee.confirmed', { '$indexOfArray': [ '$invitee.user_id', '$$i._id' ] } ] } } } } } }, { '$project': { inviteeT: 0 } }, { '$match': { 'invitee.0': { '$exists': true } } } ], {})
[
{
"_id": "5a0afda01643cf41789e500f",
"name": "Group1",
"topic": "This stuff",
"currentMove": 3,
"invitee": [
{
"_id": "5a0afda01643cf41789e5012",
"user_id": {
"_id": "5a0afda01643cf41789e500c",
"__v": 0,
"name": "Fred",
"currentMove": 3
},
"confirmed": true
}
],
"__v": 0
}
]
New $lookup example. Yay!
Mongoose: groups.aggregate([ { '$lookup': { from: 'users', let: { ids: '$invitee._id', users: '$invitee.user_id', confirmed: '$invitee.confirmed', currentMove: '$currentMove' }, pipeline: [ { '$match': { '$expr': { '$and': [ { '$in': [ '$_id', '$$users' ] }, { '$eq': [ '$currentMove', '$$currentMove' ] } ] } } }, { '$project': { _id: { '$arrayElemAt': [ '$$ids', { '$indexOfArray': [ '$$users', '$_id' ] } ] }, user_id: '$$ROOT', confirmed: { '$arrayElemAt': [ '$$confirmed', { '$indexOfArray': [ '$$users', '$_id' ] } ] } } } ], as: 'invitee' } }, { '$match': { 'invitee.0': { '$exists': true } } } ])
[
{
"_id": "5a0afda01643cf41789e500f",
"name": "Group1",
"topic": "This stuff",
"currentMove": 3,
"invitee": [
{
"_id": "5a0afda01643cf41789e5012",
"user_id": {
"_id": "5a0afda01643cf41789e500c",
"__v": 0,
"name": "Fred",
"currentMove": 3
},
"confirmed": true
}
],
"__v": 0
}
]
Horrible populate example :(
Mongoose: groups.find({}, { fields: {} })
Mongoose: users.find({ _id: { '$in': [ ObjectId("5a0afda01643cf41789e500a"), ObjectId("5a0afda01643cf41789e500b"), ObjectId("5a0afda01643cf41789e500c"), ObjectId("5a0afda01643cf41789e500d"), ObjectId("5a0afda01643cf41789e500e") ] }, '$where': 'this.currentMove === 3' }, { fields: {} })
All members still there
[
{
"_id": "5a0afda01643cf41789e500f",
"name": "Group1",
"topic": "This stuff",
"currentMove": 3,
"__v": 0,
"invitee": [
{
"user_id": null,
"_id": "5a0afda01643cf41789e5014",
"confirmed": false
},
{
"user_id": null,
"_id": "5a0afda01643cf41789e5013",
"confirmed": false
},
{
"user_id": {
"_id": "5a0afda01643cf41789e500c",
"__v": 0,
"name": "Fred",
"currentMove": 3
},
"_id": "5a0afda01643cf41789e5012",
"confirmed": true
},
{
"user_id": null,
"_id": "5a0afda01643cf41789e5011",
"confirmed": false
},
{
"user_id": null,
"_id": "5a0afda01643cf41789e5010",
"confirmed": false
}
]
}
]
Now they are filtered
[
{
"_id": "5a0afda01643cf41789e500f",
"name": "Group1",
"topic": "This stuff",
"currentMove": 3,
"__v": 0,
"invitee": [
{
"user_id": {
"_id": "5a0afda01643cf41789e500c",
"__v": 0,
"name": "Fred",
"currentMove": 3
},
"_id": "5a0afda01643cf41789e5012",
"confirmed": true
}
]
}
]
Using populate()
So using .populate() here is actually pretty horrible. Sure it looks like less, but it's actually doing a lot of things that simply are not needed, and all because the "join" does not happen on the server:
// Note that we cannot populate "here" since we need the returned value
let results = await Group.find();
// The value is only in context as we use `Array.map()` to process each result
results = await Promise.all(
results.map( r =>
User.populate(r,{
path: 'invitee.user_id',
match: { "$where": `this.currentMove === ${r.currentMove}` }
})
)
);
console.log("All members still there");
log(results);
// Then we clean it for null values
results = results.map( r =>
Object.assign(r,{
invitee: r.invitee.filter(i => i.user_id !== null)
})
);
console.log("Now they are filtered");
log(results);
So I also included that in the output above, as well as the whole code listing.
The problem becomes evident as you cannot "chain" the populate directly to the first query. You actually need to return the documents ( potentially ALL of them ) in order to use the current document value in a subsequent populate. And this MUST be processed for each document returned.
Not only that but populate() is NOT going to "filter" the array to only those which match, even with the query condition. All it does is set's the unmatched elements to null:
[
{
"_id": "5a0afa889f9f7e4064d8794d",
"name": "Group1",
"topic": "This stuff",
"currentMove": 3,
"__v": 0,
"invitee": [
{
"user_id": null,
"_id": "5a0afa889f9f7e4064d87952",
"confirmed": false
},
{
"user_id": null,
"_id": "5a0afa889f9f7e4064d87951",
"confirmed": false
},
{
"user_id": {
"_id": "5a0afa889f9f7e4064d8794a",
"__v": 0,
"name": "Fred",
"currentMove": 3
},
"_id": "5a0afa889f9f7e4064d87950",
"confirmed": true
},
{
"user_id": null,
"_id": "5a0afa889f9f7e4064d8794f",
"confirmed": false
},
{
"user_id": null,
"_id": "5a0afa889f9f7e4064d8794e",
"confirmed": false
}
]
}
]
This then needs an Array.filter() to be processed again for "each" document returned, which can finally remove the unwanted array items and give you the same result the other aggregation queries are doing.
So it's "really wasteful" and just not a good way to do things. Little point in having a database, when you're actually doing the majority of processing on the server. In fact, we may have well simply returned the populated result and then run an Array.filter() in order to remove the unwanted entries.
This is just not how you write fast and effective code. So the example here is sometimes "what looks simple" is actually doing a lot more damage than good.