Computed properties in Swift with getters and setters - swift

I'm playing with the swift language and i have a question on get/set properties. I think that it makes no sense to let the inner variable be public when the value is managed by a computed property. So I think that making this private to the class is a good practise. As I'm still learning maybe some of you could give me other ideas to leave it public.
class aGetSetClass{
private var uppercaseString : String
var upperString : String {
get {
return uppercaseString
}
set (value) {
self.uppercaseString = value.uppercaseString
}
}
init(){
uppercaseString = "initialized".uppercaseString
}
}
var instance3 = aGetSetClass()
println(instance3.upperString) // INITIALIZED
instance3.upperString = "new"
// println(instance3.uppercaseString) // private no access
println(instance3.upperString) // NEW
instance3.upperString = "new123new"
println(instance3.upperString) // NEW123NEW

The only way I could think of public access is either to make it as private set and then use a public set function instead:
public private(set) uppercaseString: String
public func setUpperString(string: String) {
uppercaseString = string.uppercaseString
}
Or make it public and use a didSet which sets itself under a certain condition (very inefficient for long strings):
public uppercaseString: String {
didSet {
if uppercaseString != uppercaseString.uppercaseString {
uppercaseString = uppercaseString.uppercaseString
}
}
}
These implementations use direct public access but your version is in my perspective the better / "swifter" way.

Related

Can I make my own getters and setters and should I?

Should I make my own getters and setters in Swift? Im confused by the built in getters ad setters...is this even needed?
//properties for the resident
private var name: String!
var apartmentNumber: String!
var email : String!
var phoneNumber : String!
public func getName()->String{
return self.name
}
public func setName(name : String){
self.name = name
}
}
I've written an article for exactly this. I'll paste it here.
Stop writing getters and setters in Swift
I see this time and time again, and it's about time I write an article in one place to consolidate all my thoughts. If you find yourself writing code that looks like this, listen up:
public class C {
private var _i: Int = 0
public var i: Int {
get {
return self._i
}
set {
self._i = newValue
}
}
}
This pattern* is completely pointless in Swift, and I'll explain why, but firstly we need to take a short detour through Java land. Why Java? Because most of the people I run into who write Swift like this have some sort of Java background, either
because it was taught in their computer sceince courses, or
because they're coming over to iOS development, from Android
What's the point of getters and setters?
Suppose we have the following class in Java:
public class WeatherReport {
public String cityName;
public double temperatureF;
public WeatherReport(String cityName, double temperatureF) {
this.cityName = cityName;
this.temperatureF = temperatureF;
}
}
If you showed this class to any CS prof, they're surely going to bark at you for breaking encapsulation. But what does that really mean? Well, imagine how a class like this would be used. Someone would write some code that looks something like this:
WeatherReport weatherReport = weatherAPI.fetchWeatherReport();
weatherDisplayUI.updateTemperatureF(weatherReport.temperatureF);
Now suppose you wanted to upgrade your class to store data in a more sensible temperature unit (beating the imperial system dead horse, am I funny yet?) like Celcius or Kelvin. What happens when you update your class to look like this:
public class WeatherReport {
public String cityName;
public double temperatureC;
public WeatherReport(String cityName, double temperatureC) {
this.cityName = cityName;
this.temperatureC = temperatureC;
}
}
You've changed the implementation details of your WeatherReport class, but you've also made an API breaking change. Because temperatureF was public, it was part of this class' API. Now that you've removed it, you're going to cause compilation errors in every consumer that depended on the exitense of the temperatureF instance variable.
Even worse, you've changed the semantics of the second double argument of your constructor, which won't cause compilation errors, but behavioural errors at runtime (as people's old Farenheit based values are attemped to be used as if they were celcius values). However, that's not an issue I'll be discussing in this article.
The issue here is that consumers of this class will be strongly coupled to the implementation details of your class. To fix this, you introduce a layer of seperation between your implementation details and your interface. Suppose the Farenheit version of our class was implemented like so:
public class WeatherReport {
private String cityName;
private double temperatureF;
public WeatherReport(String cityName, double temperatureF) {
this.cityName = cityName;
this.temperatureF = temperatureF;
}
public String getCityName() {
return this.cityName;
}
public void setCityName(String cityName) {
this.cityName = cityName;
}
public double getTemperatureF() {
return this.temperatureF;
}
public void setTemperatureF(double temperatureF) {
this.temperatureF = temperatureF;
}
}
The getters and setters are really basic methods that access or update our instance variables. Notice how this time, our instance variables are private, and only our getters and setters are public. A consumer would use this code, as so:
WeatherReport weatherReport = weatherAPI.fetchWeatherReport();
weatherDisplayUI.updateTemperatureF(weatherReport.getTemperatureF());
This time, when we make the upgrade to celcius, we have the freedom to change our instance variables, and tweak our class to keep it backwards compatible:
public class WeatherReport {
private String cityName;
private double temperatureC;
public WeatherReport(String cityName, double getTemperatureC) {
this.cityName = cityName;
this.temperatureC = temperatureC;
}
public String getCityName() {
return this.cityName;
}
public void setCityName(String cityName) {
this.cityName = cityName;
}
// Updated getTemperatureF is no longer a simple getter, but instead a function that derives
// its Farenheit value from the Celcius value that actuallyed stored in an instance variable.
public double getTemperatureF() {
return this.getTemperatureC() * 9.0/5.0 + 32.0;
}
// Updated getTemperatureF is no longer a simple setter, but instead a function
// that updates the celcius value stored in the instance variable by first converting from Farenheit
public void setTemperatureF(double temperatureF) {
this.setTemperatureC((temperatureF - 32.0) * 5.0/9.0);
}
// Mew getter, for the new temperatureC instance variable
public double getTemperatureC() {
return this.temperatureC;
}
// New setter, for the new temperatureC instance variable
public void setTemperatureC(double temperatureC) {
this.temperatureC = temperatureC;
}
}
We've added new getters and setters so that new consumers can deal with temperatures in Celcius. But importantly, we've re-implemented the methods that used to be getters and setters for temperatureF (which no longer exists), to do the appropraite conversions and forward on to the Celcius getters and setters. Because these methods still exist, and behave identically as before, we've successfully made out implementation change (storing F to storing C), without breaking our API. Consumers of this API won't notice a difference.
So why doesn't this translate into Swift?
It does. But simply put, it's already done for you. You see, stored properties in Swift are not instance variables. In fact, Swift does not provide a way for you to create or directly access instance variables.
To understand this, we need to have a fuller understanding of what properties are. There are two types, stored and computed, and neither of them are "instance variables".
Stored properties: Are a combination of a comiler-synthesized instance variable (which you never get to see, hear, touch, taste, or smell), and the getter and setter that you use to interact with them.
Computed proepties: Are just a getter and setter, without any instance variable to act as backing storage. Really, they just behave as functions with type () -> T, and (T) -> Void, but have a pleasant dot notation syntax:
print(weatherReport.temperatureC)
weatherReport.temperatureC = 100
rather than a function calling synax:
print(weatherReport.getTemperatureC())
weatherReport.setTemperatureC(100)
So in fact, when you write:
class C {
var i: Int
}
i is the name of the getter and setter for an instance variable the compiler created for you. Let's call the instance variable $i (which is not an otherwise legal Swift identifier). There is no way to directly access $i. You can only get its value by calling the getter i, or update its value by calling its setter i.
So lets see how the WeatherReport migration problem looks like in Swift. Our initial type would look like this:
public struct WeatherReport {
public let cityName: String
public let temperatureF: Double
}
Consumers would access the temperature with weatherReport.temperatureF. Now, this looks like a direct access of an isntance variable, but remember, that's simply not possible in Swift. Instead, this code calls the compiler-syntehsized getter temperatureF, which is what accesses the instance variable $temperatureF.
Now let's do our upgrade to Celcius. We will first update our stored property:
public struct WeatherReport {
public let cityName: String
public let temperatureC: Double
}
This has broken our API. New consumers can use temperatureC, but old consumers who depended on temperatureF will no longer work. To support them, we simply add in a new computed property, that does the conversions between Celcius and Fahenheit:
public struct WeatherReport {
public let cityName: String
public let temperatureC: Double
public var temperatureF: Double {
get { return temperatureC * 9/5 + 32 }
set { temperatureC = (newValue - 32) * 5/9 }
}
}
Because our WeatherReport type still has a getter called temperatureF, consumers will behave just as before. They can't tell whether a property that they access is a getter for a stored property, or a computed property that derives its value in some other way.
So lets look at the original "bad" code. What's so bad about it?
public class C {
private var _i: Int = 0
public var i: Int {
get {
return self._i
}
set {
self._i = newValue
}
}
}
When you call c.i, the following happens:
You access the getter i.
The getter i accesses self._i, which is yet another getter
The getter _i access the "hidden" instance variable $i
And it's similar for the setter. You have two layers of "getterness". See what that would look like in Java:
public class C {
private int i;
public C(int i) {
this.i = i;
}
public int getI1() {
return this.i;
}
public void setI1(int i) {
this.i = i;
}
public int getI2() {
return this.getI1();
}
public void setI2(int i) {
this.setI1(i);
}
}
It's silly!
But what if I want a private setter?
Rather than writing this:
public class C {
private var _i: Int = 0
public var i: Int {
get {
return self._i
}
}
}
You can use this nifty syntax, to specify a seperate access level for the setter:
public class C {
public private(set) var i: Int = 0
}
Now isn't that clean?
There is no need to create setters and getters for stored properties in Swift and you shouldn't create them either.
You can control the accessibility of getters/setters separately when you declare a property.
public private(set) var name: String // public getter, private setter
If you want to implement some custom logic in your setter, you should use property observer, i.e. didSet/willSet.
var name: String {
didSet {
// This is called every time `name` is set, so you can do your custom logic here
}
}
You will hardly come across the need to create your own getters and setters.
Swift's computed property lets you use getters and setters in a very simple way.
Eg: below defined is a computed property circleArea that returns area of circle depending on radius.
var radius: Float = 10
var circleArea: Float {
get {
return .pi * powf(radius, 2)
}
set {
radius = sqrtf(newValue / .pi)
}
}
While you can observe a stored value and perform some task using property observers:
var radius: Float = 10 {
willSet {
print("before setting the value: \(value)")
}
didSet {
print("after the value is set: \(value)")
}
}
radius += 1
// before setting the value: 10.0
// after the value is set: 11.0
However if you feel like using getter setter, you can define appropriate functions for that. Below defined is an extension on Integer to get and set properties value.
extension Int {
func getValue() -> Int {
return self
}
mutating func setValue(_ val: Int) {
self = val
}
}
var aInt: Int = 29
aInt.getValue()
aInt.setValue(45)
print(aInt)
// aInt = 45

Singleton? Or is there a better way?

I'm about to build a singleton but I'm not sure if it's the right solution.
I have this problem I have a class that creates a URLSessionTaskDelegate. I would like to use that delegate in another class to get some information from the file upload.
So I was thinking If I could put this plus some other information in to an object like this:
public class UploadQueueCellData
{
let _FileName:String
let _UploadTaskDelegate:URLSessionTaskDelegate
let _ImageData:Data
init(fileName:String,imageData:Data,uploadTaskDelegate:URLSessionTaskDelegate)
{
_FileName = fileName
_ImageData = imageData
_UploadTaskDelegate = uploadTaskDelegate
}
.... etc
}
And then store it in a singleton with a array inside it:
public class ImageUploadQueue
{
private var _queue = [UploadQueueCellData]()
private let imageUploadQueue:ImageUploadQueue? = nil
public func GetImageUploadQueueInstance() -> ImageUploadQueue
{
if imageUploadQueue == nil
{
imageUploadQueue = ImageUploadQueue()
return imageUploadQueue
}
else
{
return imageUploadQueue!
}
}
private init()
{
}
.... etc
}
and then just use that to update information as change happens in another class.
But is there a better way without a singleton ? and am I even doing the singleton correct from a Swift 3 point of view ?
Edit:
so I I see that I'm doing the singleton wrong:
public class ImageUploadQueue
{
private var _queue = [UploadQueueCellData]()
//private let imageUploadQueue:ImageUploadQueue? = nil
static let shared = ImageUploadQueue()
private init()
{
}
Would that be better then? But the question remains is there not a better approach than using the singleton pattern for this? I say better simply because I regard the singleton pattern as a last resort.
I found that my problem arose from the fact that I couldn't get a class I created in one view to display information in another view. my solution to this was the singleton solution above it worked but I felt dirty for using that solution.
I finally found a different way to do this. instead of the singleton I've just created a class containing the Array just like the singleton did above like this:
public class ImageUploadQueue
{
private var _queue = [UploadQueueCellData]()
....//Class specific code
}
and then just use that class as a reference to the Data just like the singleton with the exception that my class above it
had this function that enabled the view to use the information in the queue
public func GetUploadQueue()->ImageUploadQueue
{
return _networkRequester.uploadQueue
}
However that class is created by viewA and I needed the information in ViewB.
so I did this in viewB
var uploader:ImageUpload
{
get
{
return ((self.tabBarController!.viewControllers![0] as? UINavigationController)?.viewControllers[0] as! ViewController).uploader
}
set
{
(self.tabBarController!.viewControllers![0] as! ViewController).uploader = newValue
}
}
And it solved my initial problem with not being able to get information from viewA to ViewB at the same time avoided the use of a singleton.

How to port a complicated abstract class to swift?

I have an abstract class in my mind and I can't implement its several features in swift, so I use C++ to deliver my thoughts:
template <class T>
class Swapping {
public:
void swap() { _foregroundIndex = backgroundIndex() }
virtual void cleanup() = 0;
T* foreground() { return _buffer[foregroundIndex()]; }
T* background() { return _buffer[backgroundIndex()]; }
void setForeground(T* foreground) { _buffer[foregroundIndex()] = foreground; }
void setBackground(T* background) { _buffer[backgroundIndex()] = background; }
private:
short foregroundIndex() { return _foregroundIndex; }
short backgroundIndex() { return _foregroundIndex ^ 1; }
short _foregroundIndex = 0;
T* _buffer[2] = {NULL, NULL};
}
The main contradiction is that
The pure virtual method cleanup() requires all subclasses to implement it explicitly (can achieve in swift with protocol)
The instance variable _foregroundIndex has an initial value (cannot achieve using protocol)
The instance variable _foregroundIndex is restricted to be private ( cannot achieve using protocol)
On the other hand, if I use a class instead of protocol, then I can't guarantee cleanup() method is overriden.
One may suggest that put the virtual method in a protocol and the instance variable in a class. That may work but is not a obsession-satisfying one.
P.S. Objective-C is not Swift. Any objc_runtime related workaround is not preferred.
There’s an obvious solution, which I have seen often but will certainly not satisfy you is:
func cleanup() {
fatalError("You must override cleanup()")
}
Then you could try using extensions to extend the protocol with default implementations, but extensions don’t allow stored properties and so you would most likely need some external objects or other magic you certainly also dislike.
As I noted above in the comments, you might need to rethink your design. I don’t know what you really intend to do, but maybe something like this would work out for you:
class Swapper<T> {
private var foregroundIndex = 0
private var backgroundIndex: Int {
return foregroundIndex ^ 1
}
private var buffer: [T?] = [nil, nil]
private let cleanupHandler: () -> ()
init(cleanupHandler: #escaping () -> ()) {
self.cleanupHandler = cleanupHandler
}
func cleanup() {
cleanupHandler()
}
var foreground: T? {
get {
return buffer[foregroundIndex]
}
set {
buffer[foregroundIndex] = newValue
}
}
var background: T? {
get {
return buffer[backgroundIndex]
}
set {
buffer[backgroundIndex] = newValue
}
}
func swap() {
foregroundIndex = backgroundIndex
}
}
This makes more sense to me as this allows any types to be swapped with any clean up handler, without having to subclass the class every time.

Actionscript Classes: variable reference within method not recognized

Whenever I try to access a variable within a class method, Flash gives the error message: Access of undefined variable
This is true for variables vertices, i, deltap, etc. below. All of these should be defined for the whole class, as far as I can see. What am I missing?
package
{
import flash.display.Shape;
import flash.display.Graphics;
import fl.motion.Color;
public dynamic class Quadrilateral extends Shape {
public var vertices:Array = new Array();
public var endvertices:Array;
public var angle:Number;
public var mycolor:Color;
private var steps:Number;
private var deltap:Array = new Array(4);
private var i:Number;
public function Quadrilateral(vertexlist, fillcolor, stepcount=100) {
vertices = vertexlist;
mycolor = fillcolor;
steps = stepcount;
drawme()
}
public static function setfinal(vertexlist) {
endvertices = vertexlist;
for (i=0;i<4;i++) {
deltap[i] = (endvertices[i] - vertices[i])/100;
}
}
}
You are missing that the method is static, which means that you cannot access non static members from inside it.
That method should not be static.

How to assign/opt from multiple delegates for a 'moled' method?

I am currently examining Moles from the outside while I wait for my VS 2010 license, and I wonder whether Moles allows me to:
provide the ability to assígn multiple mole delegates for a method being moled, perhaps at a test fixture setup level?
switch in runtime in my test case, which of my mole delegates must be invoked for the upcoming call(s) to the moled method being isolated?
Any hints?
Best Answer:
It is much easier and makes far more sense to include gating logic in the detour method, than using two stubs for the same method! For example, MyMethod reads data from three different files on disk, each requiring different mock data to be returned. We may detour System.IO.File.OpenRead and gate the return value by analyzing the input parameters of OpenRead:
TEST METHOD:
[TestMethod]
[HostType("Moles")]
public void Test()
{
System.IO.Moles.MFile.OpenReadString = filePath => {
var mockStream = new System.IO.FileStream();
byte[] buffer;
switch (filePath)
{
case #"C:\DataFile.dat":
mockStream.Write(buffer, 0, 0); // Populate stream
break;
case #"C:\TextFile.txt":
mockStream.Write(buffer, 0, 0); // Populate stream
break;
case #"C:\LogFile.log":
mockStream.Write(buffer, 0, 0); // Populate stream
break;
}
return mockStream;
};
var target = new MyClass();
target.MyMethod();
}
TARGET TYPE:
using System.IO;
public class MyClass
{
public void MyMethod()
{
var fileAData = File.OpenRead(#"C:\DataFile.dat");
var fileBData = File.OpenRead(#"C:\TextFile.txt");
var fileCData = File.OpenRead(#"C:\LogFile.log");
}
}
Direct Answer to Your Questions:
Yes to #1: instantiate one type for each detour, and then use each for the desired behavior. And, yes to #2: act upon one instance of the mole type or the other. This requires addition of method input parameters or class constructor injection.
For example, MyMethod reads three data files from disk, and you need to pass back three different data mocks. MyMethod requires three parameters, an overtly intrusive solution. (Note input parameters are FileInfo type; because, System.IO>File is static and can not be instantiated: For example:
TEST METHOD:
[TestMethod]
[HostType("Moles")]
public void Test()
{
var fileInfoMoleA = new System.IO.Moles.MFileInfo();
fileInfoMoleA.OpenRead = () => { return new FileStream(); };
var fileInfoMoleB = new System.IO.Moles.MFileInfo();
fileInfoMoleB.OpenRead = () => { return new FileStream(); };
var fileInfoMoleC = new System.IO.Moles.MFileInfo();
fileInfoMoleC.OpenRead = () => { return new FileStream(); };
var target = new MyClass();
target.MyMethod(fileInfoMoleA, fileInfoMoleB, fileInfoMoleC);
}
TARGET TYPE:
using System.IO;
public class MyClass
{
// Input parameters are FileInfo type; because, System.IO.File
// is a static class, and can not be instantiated.
public void MyMethod(FileInfo fileInfoA, FileInfo fileInfoB, FileInfo fileInfoC)
{
var fileAData = fileInfoA.OpenRead();
var fileBData = fileInfoB.OpenRead();
var fileCData = fileInfoC.OpenRead();
}
}
UPDATE:
In response to #Chai comment, it is possible to create common methods, within the test project, that may be referenced as the mole detour delegate. For example, you may wish to write a common method that may be referenced by any unit test, that sets up a variety of pre-configured scenarios. The following example displays how a parameterized method could be used. Get creative -- they're just method calls!
TARGET TYPES:
namespace PexMoleDemo
{
public class MyClass
{
private MyMath _math;
public MyClass()
{
_math = new MyMath() { left = 1m, right = 2m };
}
public decimal GetResults()
{
return _math.Divide();
}
}
public class MyOtherClass
{
private MyMath _math;
public MyOtherClass()
{
_math = new MyMath() { left = 100m, right = 200m };
}
public decimal Divide()
{
return _math.Divide();
}
}
public class MyMath
{
public decimal left { get; set; }
public decimal right { get; set; }
public decimal Divide()
{
return left / right;
}
}
}
TEST METHODS:
ArrangeScenarios() sets up mole detours, by switching on the enumeration parameter. This allows the same scenarios to be erected, in a DRY manner, throughout many tests.
using System;
using Microsoft.Moles.Framework;
using Microsoft.VisualStudio.TestTools.UnitTesting;
using PexMoleDemo;
[assembly: MoledAssembly("PexMoleDemo")]
namespace TestProject1
{
[TestClass()]
public class ProgramTest
{
public enum Scenarios
{
DivideByZero,
MultiplyInsteadOfDivide
}
private void ArrangeScenario(Scenarios scenario)
{
switch (scenario)
{
case Scenarios.DivideByZero:
PexMoleDemo.Moles.MMyMath.AllInstances.rightGet =
instance => { return 0m; };
break;
case Scenarios.MultiplyInsteadOfDivide:
PexMoleDemo.Moles.MMyMath.AllInstances.Divide =
instance => { return instance.left * instance.right; };
break;
default:
throw new NotImplementedException("Invalid scenario.");
}
}
[TestMethod]
[HostType("Moles")]
[ExpectedException(typeof(DivideByZeroException))]
public void Test1()
{
ArrangeScenario(Scenarios.DivideByZero);
var target = new PexMoleDemo.MyClass();
var math = new PexMoleDemo.MyMath() { left = 1, right = 2 };
var left = math.left;
var right = math.right;
var actual = target.GetResults();
}
[TestMethod]
[HostType("Moles")]
public void Test2()
{
ArrangeScenario(Scenarios.MultiplyInsteadOfDivide);
// Perform some sort of test that determines if code breaks
// when values are multiplied instead of divided.
}
[TestMethod]
[HostType("Moles")]
[ExpectedException(typeof(DivideByZeroException))]
public void Test3()
{
ArrangeScenario(Scenarios.DivideByZero);
var target = new PexMoleDemo.MyOtherClass();
var math = new PexMoleDemo.MyMath() { left = 1, right = 2 };
var left = math.left;
var right = math.right;
var actual = target.Divide();
}
[TestMethod]
[HostType("Moles")]
public void Test4()
{
ArrangeScenario(Scenarios.MultiplyInsteadOfDivide);
// Perform some sort of test that determines if code breaks
// when values are multiplied instead of divided.
}
}
}