Object Tracking in non static environment - matlab

I am working on a drone based video surveillance project. I am required to implement object tracking in the same. I have tried conventional approaches but these seem to fail due to non static environment.
This is an example of what i would want to achieve. But this uses background subtraction which is impossible to achieve with a non static camera.
I have also tried feature based tracking using SURF features, but it fails for smaller objects and is prone to false positives.
What would be the best way to achieve the objective in this scenario ?.
Edit : An object can be anything within a defined region of interest. The object will usually be a person or a vehicle. The idea is that the user will make a bounding box which will define the region of interest. The drone now has to start tracking whatever is within this region of interest.

Tracking local features (like SURF) won't work in your case. Training a classifier (like Boosting with HAAR features) won't work either. Let me explain why.
Your object to track will be contained in a bounding box. Inside this bounding box there could be any object, not a person, a car, or something else that you used to train you classifier.
Also, near the object, in the bounding box there will be also background noise that will change as soon as your target object moves, even if the appearance of the object doesn't change.
Moreover the appearance of you object changes (e.g. a person turns, or drop the jacket, a vehicle get a reflection of the sun, etc...), or the object gets (partially or totally) occluded for a while. So tracking local features is very likely to lose the tracked object very soon.
So the first problem is that you must deal with potentially a lot of different objects, possibly unknown a priori, to track and you cannot train a classifier for each one of these.
The second problem is that you must follow an object whose appearance may change, so you need to update your model.
The third problem is that you need some logic that tells you that you lost the tracked object, and you need to detect it again in the scene.
So what to do? Well, you need a good long term tracker.
One of the best (to my knowledge) is Tracking-Learning-Detection (TLD) by Kalal et. al.. You can see on the dedicated page a lot of example videos, and you can see that it works pretty good with moving cameras, objects that change appearance, etc...
Luckily for us, OpenCV 3.0.0 has an implementation for TLD, and you can find a sample code here (there is also a Matlab + C implementation in the aforementioned site).
The main drawback is that this method could be slow. You can test if it's an issue for you. If so, you can downsample the video stream, upgrade your hardware, or switch to a faster tracking method, but this depends on you requirements and needs.
Good luck!

The simplest thing to try is frame differencing instead of background subtraction. Subtract the previous frame from the current frame, threshold the difference image to make it binary, and then use some morphology to clean up the noise. With this approach you typically only get the edges of the objects, but often that is enough for tracking.
You can also try to augment this approach using vision.PointTracker, which implements the KLT (Kanad-Lucas-Tomasi) point tracking algorithm.
Alternatively, you can try using dense optical flow. See opticalFlowLK, opticalFlowHS, and opticalFlowLKDoG.

Related

Setting area for BlobAnalysis in Matlab

I am using this example from a Computer Vision Made Easy" Matlab Webinar I watched, since I intend to use Computer Vision for my research in order to count cars and/or other types of vehicles.
Although I have changed some of the filter parameters and the detection works quite well, the problem is that the script displays ALL moving objects in the video. I would like to count vehicles from a specific road but my video screenshot includes many roads (screenshot here).
1) Is there a way to set the area of the video that I would like to detect cars? For example, only the "green arrow" road, and leave out the rest? I tried to crop the video but it is not a good solution since a part of another road always appears(screenshot here).
2) Moreover, in which part of the code can I add a counter in order to have an output on how many vehicles passed through the specific segment of the road? Any ideas on that?
If you know ahead of time where the road is, you can create a binary mask image, where the road is marked with 1's, and everything else has the value of 0. Then you can simply check whether or not a moving object is inside your region of interest.
Once you get comfortable with this example, check out a more advanced version, which not only detects moving objects, but also tracks them using the Kalman filter.

Simulating physics for voxel constructions (Minecraft, Dwarf Fortress, etc)?

I'm hoping to prototype some very basic physics/statics simulations for "voxel-based" games like Minecraft and Dwarf Fortress, so that the game can detect when a player has constructed a structure that should not be able to stand up on its own.. Obviously this is a very fuzzy definition -- whether a structure is impossible depends upon multitude of material and environmental properties -- but the general idea is to motivate players to build structures that resemble the buildings we see in the real world. I'll describe what I mean in a bit more detail below, but I generally want to know if anyone could suggest either an potential approach to the problem or a resource that I could use.
Here's some examples of buildings that could be impossible if the material was not strong enough.
Here's some example situations. My understanding of this subject is not great but bear with me.
If this structure were to be made of concrete with dimensions of, say, 4m by 200m, it would probably not be able to stand up. Because the center of mass is not over its connection to the ground, I think it would either tip over or crack at the base.
The center of gravity of this arch lies between the columns holding it up, but if it was very big and made of a weak, heavy material, it would crumble under its own weight.
This tower has its center of gravity right over its base, but if it is sufficiently tall then it only takes a bit of force for the wind to topple it over.
Now, I expect that a full-scale real-time simulation of these physics isn't really possible... but there's a lot of ways that I could simplify the simulation. For example:
Tests for physics-defying structures could be infrequently and randomly performed, so a bad building doesn't crumble right as soon as it is built, but as much as a few minutes later.
Minecraft and Dwarf Fortress hardly perform rigid- or soft-body physics. For this reason, any piece of a building that is deemed to be physically impossible can simple "pop" into rubble instead of spawning a bunch of accurate physics props.
Have you considered taking an existing 3d environment physics engine and "rounding off" orientations of objects? In the case of your first object (the L-shaped thing), you could run a simulation of a continuous, non-voxelized object of similar shape behind the scenes and then monitor that object for orientation changes. In a simple case, if the object's representation of the continuous hits the ground, the object in the voxelized gameplay world could move its blocks to the ground.
I don't think there is a feasible way to do this. Minecraft has no notion of physical structure. So you will have to look at each block individually to determine if it should fall (there are other considerations but this is minimum). You would therefore need a way to distinguish between ground and "not ground". This is modeling problem first and foremost, not a programming problem (not even simulation design). I think this question is out of scope for SO.
For instance consider the following model, that may give you an indication of the complexities involved:
each block above height = 0 experiences a "down pull" = P, P may be any of the following:
0 if the box is supported by another box
m*g (where m is its mass which depends on material density * voxel volume) otherwise if it is free
F represents some "friction" or "glue" between vertical faces of boxes, it counteracts P.
This friction should have a threshold beyond which it "breaks" and the block then has a net pull downwards.
if m*g < sum F, box stays where it is. Otherwise, box falls.
F depends on the pairs of materials in contact
for n=2, so you can form a line of blocks between two towers
F is what causes the net pull of a box to be larger than m*g. For instance if you have two blocks a-b-c with c being on d, then a pulls on b, so b should be "heavier" than m*g where it contacts c. If this net is > F, then the pair a-b should fall.
You might be able to simulate the above and get interesting results, but you will find it really challenging to handle the case where there are two towsers with a line of blocks between them: the towers are coupled together by line of blocks, there is no longer a "tip" to the line of blocks. At this stage you might as well get out your physics books to create a system of boxes and springs and come up with equations that you might be able to solve numerically, but in a full 3D system you will have a 3D mesh of springs to navigate iteratively to converge to force values on each box and determine which ones move.
A professor of mine suggested that I look at this paper.
Additionally, I found the keyword for what it is I'm looking for. "Structural Analysis." I bought a textbook and I have a long road ahead of me.

comparing a known object in different pictures to find position and orientation error?

I am new to this place. I am doing a project where i use X ray images with known object dimensions. During my scan i want to compare the images with respect to first image to measure the position and orientation errors during my manipulator movement.
1) I use a known object next to my measuring object to check the errors.
How can i compare two or different images with same known objects?
2) I am planning to use matlab toolbox for the further processing. Is it possible to do in matlab? If so can somebody help
3) Is it possible to use POSIT algorithm to just find these errors?
You're asking a fairly complex question, without adding a lot of detail. We can only help you properly if you provide a bit more context, perhaps some examples of images.
By the sound of it: you should use the image processing toolbox.
If you have multiple images of test objects with known objects beside it, it is easiest to use normxcorr2 and friends (see this page for a worked-out example).
If you have a large amount of pictures of the same scene, possibly with rotations, scaling, optical distortions, etc. from image to image, and you still want a sub-pixel accurate estimation of your object's position, perhaps image registration is the better way to go.
But again: you should provide more detail. Only then can we give you a better, less generic answer.

Object detection/recognition using matlab [duplicate]

This question already exists:
Closed 10 years ago.
Possible Duplicate:
Object recognition system using matlab
I need help to develop an object recognition system. It needs to identify an object in an image by comparing it with an image in an existing database. For example my database may consist of images of cars, buses, cups, etc. If i give a certain image as an input i want the code to check and tell me whether a car(as in the car in the database) can be found to exist in the input image or not. This is strictly to be implemented in matlab. I have tried correlation, image subtraction and a few other algorithms but to no effect. Thanks in advance.
This is a complex subject, that is really on the bleeding edge of technology, but let me give you a few pointers to help start things out.
Somehow, you need to take into account the different sizes, angles, etc that might be around. A car looks very different if photographed from a few feet away as compared to 50 feet, as would it photographed from the front vs the side.
Edge detection algorithms generally work well at pulling the target object's shape away. Take the edges, identify lines in them, and you can try to compare these lines with those from your model.
Range to objects really makes a huge difference in building a successful algorithm. If you know the difference from the front of the car to the back, it can make all of the difference in the world.
Focus, noise, lighting, etc need to somehow be dealt with, to ensure that the system works well.
All in all, I would recommend taking some image analysis classes, reading several papers on the subject, or at least reading the Wikipedia Article, and then starting to work on your project.
The problem you have described is sometimes called object category recognition or object class recognition to emphasize that you are not trying to recognize a particular object, but a member of a category such as "car" or "person".
One popular approach for solving this problem is called Bag of Features of "Bag of Words". If you have access to the Computer Vision System Toolbox for Matlab, it has functions for detecting SURF features, which can be used for this approach.
Also, a better place to ask this question might be Signal and Image Processing stack exchange.

Jelly physics 3d

I want to ask about jelly physics ( http://www.youtube.com/watch?v=I74rJFB_W1k ), where I can find some good place to start making things like that ? I want to make simulation of cars crash and I want use this jelly physics, but I can't find a lot about them. I don't want use existing physics engine, I want write my own :)
Something like what you see in the video you linked to could be accomplished with a mass-spring system. However, as you vary the number of masses and springs, keeping your spring constants the same, you will get wildly varying results. In short, mass-spring systems are not good approximations of a continuum of matter.
Typically, these sorts of animations are created using what is called the Finite Element Method (FEM). The FEM does converge to a continuum, which is nice. And although it does require a bit more know-how than a mass-spring system, it really isn't too bad. The basic idea, derived from the study of continuum mechanics, can be put this way:
Break the volume of your object up into many small pieces (elements), usually tetrahedra. Let's call the entire collection of these elements the mesh. You'll actually want to make two copies of this mesh. Label one the "rest" mesh, and the other the "world" mesh. I'll tell you why next.
For each tetrahedron in your world mesh, measure how deformed it is relative to its corresponding rest tetrahedron. The measure of how deformed it is is called "strain". This is typically accomplished by first measuring what is known as the deformation gradient (often denoted F). There are several good papers that describe how to do this. Once you have F, one very typical way to define the strain (e) is:
e = 1/2(F^T * F) - I. This is known as Green's strain. It is invariant to rotations, which makes it very convenient.
Using the properties of the material you are trying to simulate (gelatin, rubber, steel, etc.), and using the strain you measured in the step above, derive the "stress" of each tetrahdron.
For each tetrahedron, visit each node (vertex, corner, point (these all mean the same thing)) and average the area-weighted normal vectors (in the rest shape) of the three triangular faces that share that node. Multiply the tetrahedron's stress by that averaged vector, and there's the elastic force acting on that node due to the stress of that tetrahedron. Of course, each node could potentially belong to multiple tetrahedra, so you'll want to be able to sum up these forces.
Integrate! There are easy ways to do this, and hard ways. Either way, you'll want to loop over every node in your world mesh and divide its forces by its mass to determine its acceleration. The easy way to proceed from here is to:
Multiply its acceleration by some small time value dt. This gives you a change in velocity, dv.
Add dv to the node's current velocity to get a new total velocity.
Multiply that velocity by dt to get a change in position, dx.
Add dx to the node's current position to get a new position.
This approach is known as explicit forward Euler integration. You will have to use very small values of dt to get it to work without blowing up, but it is so easy to implement that it works well as a starting point.
Repeat steps 2 through 5 for as long as you want.
I've left out a lot of details and fancy extras, but hopefully you can infer a lot of what I've left out. Here is a link to some instructions I used the first time I did this. The webpage contains some useful pseudocode, as well as links to some relevant material.
http://sealab.cs.utah.edu/Courses/CS6967-F08/Project-2/
The following link is also very useful:
http://sealab.cs.utah.edu/Courses/CS6967-F08/FE-notes.pdf
This is a really fun topic, and I wish you the best of luck! If you get stuck, just drop me a comment.
That rolling jelly cube video was made with Blender, which uses the Bullet physics engine for soft body simulation. The bullet documentation in general is very sparse and for soft body dynamics almost nonexistent. You're best bet would be to read the source code.
Then write your own version ;)
Here is a page with some pretty good tutorials on it. The one you are looking for is probably in the (inverse) Kinematics and Mass & Spring Models sections.
Hint: A jelly can be seen as a 3 dimensional cloth ;-)
Also, try having a look at the search results for spring pressure soft body model - they might get you going in the right direction :-)
See this guy's page Maciej Matyka, topic of soft body
Unfortunately 2d only but might be something to start with is JellyPhysics and JellyCar