I have generic and I want to be able to initialize it with specific constrains. The constraints are only there for initialization. The rest of the class doesn't care. Here is a simplified example:
struct Generic<T> {
let compare: (T, T) -> Bool
init<T: Equatable>(data: [T]) {
let handler: (T, T) -> Bool = { $0 == $1 }
compare = handler
insert(data)
}
init(compareHandler: (T, T) -> Bool, data[T]) {
compare = self.compareHandler
insert(data)
}
}
You can see there's two initializers. The second one obviously works fine. However, in the first one the local type T is mismatched with the struct's generic Type. So, for example, attempting to insert data I get Cannot invoke 'insert' with an argument list of type '([T])'. Is it possible for me to specialize the Struct's generic type only for the initialization or a specific function?
Note, I've already tried init<T where T:Equatable>(data: [T]) to the same effect.
Update
I'm using the following workaround: I create a top level function and removing the specialized init:
func equatableHandler<T: Equatable>(left: T, right: T) -> Bool {
return left == right
}
Clients of the struct can initialize using: Generic(compareHandler: equatableHandler, data: data)
It's not quite the "convenience" of using a specialized init, but I suppose it works well enough for my purposes. I'm not a fan of creating top-level functions, but the generic is used so often for "Equatable" generics that it makes sense for me to define the handler once for clients to use.
The problem is that the first init method
init<T: Equatable>(data: [T])
introduces a local type placeholder T which hides (and is completely
unrelated to) the placeholder T of the Generic type, so it
is essentially the same problem as in Array extension to remove object by value.
As of Swift 2 you can solve that with a "restricted extension":
extension Generic where T : Equatable {
init(data: [T]) {
let handler: (T, T) -> Bool = { $0 == $1 }
compare = handler
// ...
}
}
For Swift 1.x the only solution is probably to define a global helper
function
func makeGeneric<T : Equatable>(data: [T]) -> Generic<T> {
return Generic(compareHandler: { $0 == $1 }, data: data)
}
(and I could not think of a sensible name for the function :).
Related
In Swift, you can create a reference to a function in the form of a closure. For example:
func simpleFunc(param: Int) {
}
let simpleFuncReference = simpleFunc(param:) // works just fine
But in one case, I have a function with a generic parameter like this:
func hardFunc<T: StringProtocol>(param: T) {
}
let hardFuncReference = hardFunc(param:) // "Generic parameter 'T' could not be inferred"
To try to remove that error, I attempted to explicitly specify the type, but immediately another error comes up.
func hardFunc<T: StringProtocol>(param: T) {
}
let hardFuncReference = hardFunc(param:) // "Cannot explicitly specialize a generic function"
Is there a way I can get a reference to hardFunc as a closure?
As you already guessed, you have to help type inference out a little:
func hardFunc<T: StringProtocol>(param: T) {
}
let hardFuncReference:(String) -> Void = hardFunc(param:)
Note that you do have to specify the particular type that you're specializing on, but in this case you do it by specifying the type of the variable you're assigning the closure to.
You can't keep it generic unless you're in a generic context specifying that it's generic on the same type. So this will work too
struct Foo<T: StringProtocol> {
let hardFuncReference:(T) -> Void = hardFunc(param:)
}
Suppose I have an array of closures which can all be composed with one another (i.e., endomorphisms, their input and output types are the same). How can I compose these closures into a single closure?
For reference, I was trying to design something like the following.
struct MyType {
typealias MyClosure: (T) -> T
private var myClosures: [MyClosure] = [ ... ]
public var closure: MyClosure {
get {
return ? // somehow compose all of myClosures into a single closure here
}
}
}
My first thought was to use reduce, à la myClosures.reduce(STARTING) { a, b in b(a) },
but this requires a starting value to be supplied, and then successively applies the closures to it. I don't want to apply the closures to anything (yet), but just synthesize the private list of closures into a single, public closure which can be applied later. Given the way reduce is
defined, I expect this would look something like
myClosures.reduce(identity) { a, b in compose(a, b) }
func identity(_ input: T) { return input }
func compose(a: MyClosure, b: MyClosure) -> MyClosure { return b(a) }
but the type of b(a) is T, not (T) -> T. How can this be accomplished? Is this a better way of going about closure composition?
Edit: My original answer misunderstood what your problem was. But seeing as my original answer might be useful to future readers, I'll leave it at the bottom.
Your compose function is nearly there! b(a) does not compile because MyClosure does not take another MyClosure. b(a) is invoking the closure ("function application"). not composition. Since compose returns a closure, why not return a closure? A typical closure looks like this in Swift:
{ (param) in return doSomethingTo(param) }
So let's return that!
return { (x) in return b(a(x)) }
This can be simplified to:
{ b(a($0)) } // "return" can be omitted as well!
This page (among other things) tells you how and when you can simplify closure syntaxes.
Original answer:
Using reduce is the correct choice here. The reduction operation is composition, so let's write a compose function first:
func compose<T>(_ x: #escaping (T) -> T, _ y: #escaping (T) -> T) -> (T) -> T {
{ y(x($0)) } // or { x(y($0)) } if you want it the other way
}
Then, we reduce. What's the identity? The identity is something that has these properties:
compose(identity, anything) == anything
compose(anything, identity) == anything
What function does that? The identity function!
So we get:
func reduceClosures<T>(_ closures: [(T) -> T]) -> (T) -> T {
closures.reduce({ $0 }, compose)
}
I'm picking swift up now and the generics are pretty different than what I'm used to. What is the right way to do something like this?
func createThing<T, Seq: Sequence>(_ type: T.Type, _ block : #escaping (_ sequence: Seq) -> Void) where Seq.Element == T {
// ...
}
enum MyEnum {
case A
case B
}
// error: generic parameter 'Seq' could not be inferred
createThing(MyEnum.Type, { sequence in
for i in sequence{
//...
}
})
I would love to just supply a generic type parameter directly with createThing<MyEnum>(...) but that apparently isn't something Swift can do and generics seem to work pretty different for protocols than they do everything else.
Seq is part of the generic signature of the createThing function, which means that the compiler either needs to be able to infer this from the calling context, or be explicitly be told what concrete implementation of Sequence should expect. Also placing the Sequence generic at the function level really limits what you can do within that function, since it cannot instantiate a protocol.
You can convert the (Seq) -> Void block to a (T) -> Void one, and move the sequence iteration in doSomething, this will remove the compile error. And while you're at it, you can add a default value for the type parameter, this will enable type inferring and automatic filling of that parameter
func createThing<T>(_ type: T.Type = T.self, _ block: (T) -> Void) {
// ...
// assuming sequence is create above
sequence.forEach(block)
}
enum MyEnum {
case a
case b
}
// a dedicated function for processing items also means better structured code :)
func processEnum(_ value: MyEnum) {
// do your stuff
}
// you can now pass only the second argument
createThing(processEnum)
In C#, it's possible to call a generic method by specifying the type:
public T f<T>()
{
return something as T
}
var x = f<string>()
Swift doesn't allow you to specialize a generic method when calling it. The compiler wants to rely on type inference, so this is not possible:
func f<T>() -> T? {
return something as T?
}
let x = f<String>() // not allowed in Swift
What I need is a way to pass a type to a function and that function returning an object of that type, using generics
This works, but it's not a good fit for what I want to do:
let x = f() as String?
EDIT (CLARIFICATION)
I've probably not been very clear about what the question actually is, it's all about a simpler syntax for calling a function that returns a given type (any type).
As a simple example, let's say you have an array of Any and you create a function that returns the first element of a given type:
// returns the first element in the array of that type
func findFirst<T>(array: [Any]) -> T? {
return array.filter() { $0 is T }.first as? T
}
You can call this function like this:
let array = [something,something,something,...]
let x = findFirst(array) as String?
That's pretty simple, but what if the type returned is some protocol with a method and you want to call the method on the returned object:
(findFirst(array) as MyProtocol?)?.SomeMethodInMyProtocol()
(findFirst(array) as OtherProtocol?)?.SomeMethodInOtherProtocol()
That syntax is just awkward. In C# (which is just as strongly typed as Swift), you can do this:
findFirst<MyProtocol>(array).SomeMethodInMyProtocol();
Sadly, that's not possible in Swift.
So the question is: is there a way to accomplish this with a cleaner (less awkward) syntax.
Unfortunately, you cannot explicitly define the type of a generic function (by using the <...> syntax on it). However, you can provide a generic metatype (T.Type) as an argument to the function in order to allow Swift to infer the generic type of the function, as Roman has said.
For your specific example, you'll want your function to look something like this:
func findFirst<T>(in array: [Any], ofType _: T.Type) -> T? {
return array.lazy.compactMap { $0 as? T }.first
}
Here we're using compactMap(_:) in order to get a sequence of elements that were successfully cast to T, and then first to get the first element of that sequence. We're also using lazy so that we can stop evaluating elements after finding the first.
Example usage:
protocol SomeProtocol {
func doSomething()
}
protocol AnotherProtocol {
func somethingElse()
}
extension String : SomeProtocol {
func doSomething() {
print("success:", self)
}
}
let a: [Any] = [5, "str", 6.7]
// Outputs "success: str", as the second element is castable to SomeProtocol.
findFirst(in: a, ofType: SomeProtocol.self)?.doSomething()
// Doesn't output anything, as none of the elements conform to AnotherProtocol.
findFirst(in: a, ofType: AnotherProtocol.self)?.somethingElse()
Note that you have to use .self in order to refer to the metatype of a specific type (in this case, SomeProtocol). Perhaps not a slick as the syntax you were aiming for, but I think it's about as good as you're going to get.
Although it's worth noting in this case that the function would be better placed in an extension of Sequence:
extension Sequence {
func first<T>(ofType _: T.Type) -> T? {
// Unfortunately we can't easily use lazy.compactMap { $0 as? T }.first
// here, as LazyMapSequence doesn't have a 'first' property (we'd have to
// get the iterator and call next(), but at that point we might as well
// do a for loop)
for element in self {
if let element = element as? T {
return element
}
}
return nil
}
}
let a: [Any] = [5, "str", 6.7]
print(a.first(ofType: String.self) as Any) // Optional("str")
What you probably need to do is create a protocol that looks something like this:
protocol SomeProtocol {
init()
func someProtocolMethod()
}
And then add T.Type as a parameter in your method:
func f<T: SomeProtocol>(t: T.Type) -> T {
return T()
}
Then assuming you have a type that conforms to SomeProtocol like this:
struct MyType: SomeProtocol {
init() { }
func someProtocolMethod() { }
}
You can then call your function like this:
f(MyType.self).someProtocolMethod()
Like others have noted, this seems like a convoluted way to do what you want. If you know the type, for example, you could just write:
MyType().someProtocolMethod()
There is no need for f.
I have a generic class that can be initialised as any type. I would like to add a function with a single parameter that takes a value that is both of the class's generic type and conforms to the Comparable protocol. Type conformance should be enforced pre-compile.
I would like to do something like this:
class Object<T> {
let value: T!
init (value: T) {
self.value = value
}
func doSomething<U where U: Comparable, U == T>(otherValue: U) {
// do something
}
}
Is this possible to do?
Unfortunately, no. You can't further specialize a generic type in a method - you'd need to add a top-level function for the behavior you want.
This is the reason Array doesn't have a pure myArray.sort() function, since there's no way to guarantee that the members of any Array instance will be Comparable. Instead, there's a top-level function with this signature:
func sort<T : Comparable>(inout array: [T])
Your top-level function would have a similar structure:
func doSomething<T: Comparable)(obj: Object<T>, otherValue: T) {
// ...
}
For reference, this is possible since Swift 2.0:
extension Object where T : Comparable {
func doSomething(otherValue: T) {
// do something
}
}