I've been given a stepsize h that to be used in the implementation of a Runge-Kutta method for higher order ODEs. My problem comes when dividing up the interval from the starting time t_0 to the final time t_f. I thought of using N = ceil((t_f-t_i)/h), and then using
t = linspace(t_0, t_f, N)
But I want to keep the points used by the Runge-Kutta algorithm spaced by h for most of the process, is there a way to include the endpoint t_f while keeping the stepsize at h for the first n-1 steps? I tried using
t = t_0:h:t_f
But this does not always include the endpoint t_f.
Assuming that you want use the largest N such that your range is t_0, t_0 + h, t_0 + 2*h, ..., t_0 + h*(N-2), t_f, you would use t = [t_0 : h : t_f-eps t_f], where eps is a MATLAB function that gives the smallest distance between two floating point numbers.
Be aware that this means your last two points can be very close together. In general, if you write t = [t_0 : h : t_f-a t_f] with a < h, then the distance between the final two points will be in the interval [a, h+a).
Related
I'm new to Matlab and want to write a program that chooses the value of a parameter (P) to minimize the difference between two vectors, where each vector is a variable in a dataframe. The first vector (call it A) is a predetermined vector of 1s and 0s, and the second vector (call it B) has each of its entries determined as an indicator function that depends on the value of the parameter P and other variables in the dataframe. For instance, let C be a third variable in the dataset, so
A = [1, 0, 0, 1, 0]
B = [x, y, z, u, v]
where x = 1 if (C[1]+10)^0.5 - P > (C[1])^0.5 and otherwise x = 0, and similarly, y = 1 if (C[2]+10)^0.5 - P > (C[2])^0.5 and otherwise y = 0, and so on.
I'm not really sure where to start with the code, except that it might be useful to use the fminsearch command. Any suggestions?
Edit: I changed the above by raising to a power, which is closer to the actual example that I have. I'm also providing a complete example in response to a comment:
Let A be as above, and let C = [10, 1, 100, 1000, 1]. Then my goal with the Matlab code would be to choose a value of P to minimize the differences between the coordinates of the vectors A and B, where B[1] = 1 if (10+10)^0.5 - P > (10)^0.5 and otherwise B[1] = 0, and similarly B[2] = 1 if (1+10)^0.5 - P > (1)^0.5 and otherwise B[2] = 0, etc. So I want to choose P to maximize the likelihood that A[1] = B[1], A[2] = B[2], etc.
I have the following setup in Matlab, where ds is the name of my dataset:
ds.B = zeros(size(ds,1),1); % empty vector to fill
for i = 1:size(ds,1)
if ((ds.C(i) + 10)^(0.5) - P > (ds.C(i))^(0.5))
ds.B(i) = 1;
else
ds.B(i) = 0;
end
end
Now I want to choose the value of P to minimize the difference between A and B. How can I do this?
EDIT: I'm also wondering how to do this when the inequality is something like (C[i]+10)^0.5 - P*D[i] > (C[i])^0.5, where D is another variable in my dataset. Now P is a scalar being multiplied rather than just added. This seems more complicated since I can't solve for P exactly. How can I solve the problem in this case?
EDIT 1: It seems fminbnd() isn't optimal, likely due to the stairstep nature of the indicator function. I've updated to test the midpoints of all the regions between indicator function flips, plus endpoints.
EDIT 2: Updated to include dataset D as a coefficient of P.
If you can package your distance calculation up in a single function based on P, you can then search for its minimum.
arraySize = 1000;
ds.A = double(rand([arraySize,1]) > 0.5);
ds.C = rand(size(ds.A));
ds.D = rand(size(ds.A));
B = #(P)double((ds.C+10).^0.5 - P.*ds.D > ds.C.^0.5);
costFcn = #(P)sqrt(sum((ds.A-B(P)).^2));
% Solving the equation (C+10)^0.5 - P*D = C^0.5 for P, and sorting the results
BCrossingPoints = sort(((ds.C+10).^0.5-ds.C.^0.5)./ds.D);
% Taking the average of each crossing point with its neighbors
BMidpoints = (BCrossingPoints(1:end-1)+BCrossingPoints(2:end))/2;
% Appending endpoints onto the midpoints
PsToTest = [BCrossingPoints(1)-0.1; BMidpoints; BCrossingPoints(end)+0.1];
% Calculate the distance from A to B at each P to test
costResult = arrayfun(costFcn,PsToTest);
% Find the minimum cost
[~,lowestCostIndex] = min(costResult);
% Find the optimum P
optimumP = PsToTest(lowestCostIndex);
ds.B = B(optimumP);
semilogx(PsToTest,costResult)
xlabel('P')
ylabel('Distance from A to B')
1.- x is assumed positive real only, because with x<0 then complex values show up.
Since no comment is made in the question it seems reasonable to assume x real and x>0 only.
As requested, P 'the parameter' a scalar, P only has 2 significant states >0 or <0, let's see how is this:
2.- The following lines generate kind-of random A and C.
Then a sweep of p is carried out and distances d1 and d2 are calculated.
d1 is euclidean distance and d2 is the absolute of the difference between A and and B converting both from binary to decimal:
N=10
% A=[1 0 0 1 0]
A=randi([0 1],1,N);
% C=[10 1 1e2 1e3 1]
C=randi([0 1e3],1,N)
p=[-1e4:1:1e4]; % parameter to optimize
B=zeros(1,numel(A));
d1=zeros(1,numel(p)); % euclidean distance
d2=zeros(1,numel(p)); % difference distance
for k1=1:1:numel(p)
B=(C+10).^.5-p(k1)>C.^.5;
d1(k1)=(sum((B-A).^2))^.5;
d2(k1)=abs(sum(A.*2.^[numel(A)-1:-1:0])-sum(B.*2.^[numel(A)-1:-1:0]));
end
figure;
plot(p,d1)
grid on
xlabel('p');title('d1')
figure
plot(p,d2)
grid on
xlabel('p');title('d2')
The only degree of freedom to optimise seems to be the sign of P regardless of |P| value.
3.- f(p,x) has either no root, or just one root, depending upon p
The threshold funtion is
if f(x)>0 then B(k)==1 else B(k)==0
this is
f(p,x)=(x+10)^.5-p-x^.5
Now
(x+10).^.5-p>x.^.5 is same as (x+10).^.5-x.^.5>p
There's a range of p that keeps f(p,x)=0 without any (real) root.
For the particular case p=0 then (x+10).^.5 and x.^.5 do not intersect (until Inf reached = there's no intersection)
figure;plot(x,(x+10).^.5,x,x.^.5);grid on
[![enter image description here][3]][3]
y2=diff((x+10).^.5-x.^.5)
figure;plot(x(2:end),y2);
grid on;xlabel('x')
title('y2=diff((x+10).^.5-x.^.5)')
[![enter image description here][3]][3]
% 005
This means the condition f(x)>0 is always true holding all bits of B=1. With B=1 then d(A,B) turns into d(A,1), a constant.
However, for a certain value of p then there's one root and f(x)>0 is always false keeping all bits of B=0.
In this case d(A,B) the cost function turns into d(A,0) and this is A itself.
4.- P as a vector
The optimization gains in degrees of freedom if instead of P scalar, P is considered as vector.
For a given x there's a value of p that switches B(k) from 0 to 1.
Any value of p below such threshold keeps B(k)=0.
Equivalently, inverting f(x) :
g(p)=(10-p^2)^2/(4*p^2)>x
Values of x below this threshold bring B closer to A because for each element of B it's flipped to the element value of A.
Therefore, it's convenient to consider P as a vector, not a ascalar, and :
For all, or as many (as possible) elements of C to meet c(k)<(10-p^2)^2/(4*p^2) in order to get C=A or
minimize d(A,C)
5.- roots of f(p,x)
syms t positive
p=[-1000:.1:1000];
zp=NaN*ones(1,numel(p));
sol=zeros(1,numel(p));
for k1=1:1:numel(p)
p(k1)
eq1=(t+10)^.5-p(k1)-t^.5-p(k1)==0;
s1=solve(eq1,t);
if ~isempty(s1)
zp(k1)=s1;
end
end
nzp=~isnan(zp);
zp(nzp)
returns
=
620.0100 151.2900 64.5344 34.2225 20.2500 12.7211
8.2451 5.4056 3.5260 2.2500 1.3753 0.7803
0.3882 0.1488 0.0278
I am trying to optimize the function under the mathematical assumption given below (it essentially breaks down the current interval in the code into multiple subintervals but how do I even implement it?):
[the mathematical theory]- It is well known that the Trapezoid rule gives a more accurate approximation if the intervals are broken up into smaller intervals so that: I1 = [a; b1], I2 = [b1; b2], I3 = [b2; b3],...,I n-1 = [b n-1, bn] where bn = b. Write a program that implements this strategy using your NC.m code from above. It should be able to complete the task for an arbitrary n. How many sub-intervals must be created to get an "accurate" integral approximation of the function listed below on the interval [-3:0]?
%For this problem write a script file called NC.m that implements
%the Newton-Cotes method of integration for an arbitrary function f(x). It
%should takes as inputs the function and the limits of integration [a: b] and
%output the value of the definite integral. Specifically, you should use the
%Trapezoid rule as presented in Equation (11.73)
function [f]= NC(a,b,fun) %newton-cotes
%a and b are limits of integration
%setting it up
fa= fun(a); %y value for lower limit
fb= fun(b); %y value for upper limit
%the actual function
f= (b-a)*(fa+fb)/2;
end
%Result from estimation
%fun= #(x) normpdf(x)
%[f]= NC(-3,0,fun)- 0.6051
%not accurate when compared to results from actual calculation
%syms x
%f= normpdf(x);
%a= -3;- lower limit
%b= 0;- higher limit
%int(f, a, b)- 0.4897
Please help. It would be greatly appreciated!
Since the original problem is more complicated, the idea is described using a simple example below.
For example, suppose we want to put several router antennas somewhere in a room so that the cellphone get most signal strength on the table (received power > Pmax) while weakest signal strength on bed (received power < Pmin). What is the best (minimum) number of antennas that should be used, and where should they be placed, in order to achieve the goal.
Mathematically,
SIGNAL_STRENGTH is dependent on variable (x, y, z) and the number
of variables
. i.e. location and number of antennas.
Besides, assume
PREDICTION = f((x1, y1, z1), (x2, y2, z2), ... (xi, yi, zi), ... (xn,
yn, zn))
where n and (xi, yi, zi) are to be optimized. The goal is to minimize
cost function = ||SIGNAL_STRENGTH - PREDICTION||
I tried to use GA with mixed integer programming in Matlab to implement that. Two optimization functions are used, outer function is to optimize n, and inner optimization function optimizes (x, y, z) with given n. This method works slow and I haven't seen one result given by this method so far.
Does anyone have a more efficient way to solve this problem? Any suggestion is appreciated. Thanks in advance.
Terminology | Problem Definition
An antenna is sending at position a in R^3 with constant power. Its signal strength can be measured by some S: R^3 -> R where S has a single maximum S_0 at a and the set, constructed by S(x) > const, is simply connected, i.e. S(x) = S_0 * exp(-const * (x-a)^2).
Given a set of antennas A the resulting signal strength is the maximum of a single antenna
S_A(x) = max{S_a(x) : for all a in A} ,
which means we 'lock' on the strongest antenna, which is what cell phones do.
Let K = R^3 x R denote a space of points (position, intensity). Now concider two finite subsets POI_min and POI_max of K. We want to find the set A with the minimal amount of antennas (|A| -> min.), that satisfies
for all (x,w) in POI_min : S_A(x) < w and for all (x,w) in POI_max : S_A(x) > w .
Implication
As S(x) > const is simply connected there has to be an antenna in a sphere around the position of each element (x,w) in POI_max with radius r = max{||xi - x|| : for all xi in S(xi) = w}. Which means that if we would put an antenna at the position of (x,w), then the furthest we can go away from x and still have signal strength w is the radius r within which an actual antenna has to be positioned.
With a similar argumentation for POI_min it follows that there is no antenna within r = min{||xi - x|| : for all xi in S(xi) = w}.
Solution
Instead of solving a nonlinear optimization task we can intersect spheres to obtain the optimal solution. If k spheres around the POI_max positions intersect, we can place a single antenna in the intersection, reducing the amount of antennas needed by k-1.
However each antenna that is placed must satisfy all constraints given by the elements of POI_min. Assuming that antennas are omnidirectional and thus orientation of an antenna doesn't matter we can do (pseudocode):
min_sphere = {(x_i,r_i) : from POI_min},
spheres_to_cover = {(x_i,r_i) : from POI_max}
A = {}
while not is_empty(spheres_to_cover)
power_set_score = struct // holds score, k
PS <- costruct power set of sphere_to_cover
for i = 1:number_of_elements(PS)
k = PS[i]
if intersection(k) \ min_sphere is not empty
power_set_score[i].score = |k|
else
power_set_score[i].score = 0
end if
power_set_score[i].k = k
end for
sort(power_set_score) // sort by score, biggest first
A <- add arbitrary point in (intersection(power_set_score[1].k) \ min_sphere)
spheres_to_cover = spheres_to_cover \ power_set_score[1].k
end while
On the other hand you have just given an example problem and thus this solution may not be applicable or broad enough for your case. I did make a few assumptions. So being more specific in the question might give you an even better answer.
I'm beginner in optimization and welcome any guide in this field.
I have 15 matrices (i.e., Di of size (n*m)) and want to find best weights (i.e., wi) for weighted averaging them and make a better matrix that is more similar to one given matrix (i.e., Dt).
In fact my objective function is like it:
min [norm2(sum(wi * Di) - Dt) + norm2(W)]
for i=1 ... 15 s.t. sum(wi) = 1 , wi >= 0
How can I optimize this function in Matlab?
You are describing a simple Quadratic programming, that can be easily optimized using Matlab's quadprog.
Here how it goes:
You objective function is [norm2(sum(wi * Di) - Dt) + norm2(W)] subject to some linear constraints on w. Let's re-write it using some simplified notations. Let w be a 15-by-1 vector of unknowns. Let D be an n*m-by-15 matrix (each column is one of the Di matrices you have - written as a single column), and Dt is a n*m-by-1 vector (same as your Dt but written as a column vector). Now some linear algebra (using the fact that ||x||^2 = x'*x and that argmin x is equivalent to argmin x^2)
[norm2(sum(wi * Di) - Dt)^2 + norm2(W)^2] =
(D*w-Dt)'*(D*w-Dt) + w'*w =
w'D'Dw - 2w'D'Dt + Dt'Dt + w'w =
w'(D'D+I)w - 2w'D'Dt + Dt'Dt
The last term Dt'Dt is constant w.r.t w and therefore can be discarded during minimization, leaving you with
H = 2*(D'*D+eye(15));
f = -2*Dt'*D;
As for the constraint sum(w)=1, this can easily be defined by
Aeq = ones(1,15);
beq = 1;
And a lower bound lb = zeros(15,1) will ensure that all w_i>=0.
And the quadratic optimization:
w = quadprog( H, f, [], [], Aeq, beq, lb );
Should do the trick for you!
I need help finding an integral of a function using trapezoidal sums.
The program should take successive trapezoidal sums with n = 1, 2, 3, ...
subintervals until there are two neighouring values of n that differ by less than a given tolerance. I want at least one FOR loop within a WHILE loop and I don't want to use the trapz function. The program takes four inputs:
f: A function handle for a function of x.
a: A real number.
b: A real number larger than a.
tolerance: A real number that is positive and very small
The problem I have is trying to implement the formula for trapezoidal sums which is
Δx/2[y0 + 2y1 + 2y2 + … + 2yn-1 + yn]
Here is my code, and the area I'm stuck in is the "sum" part within the FOR loop. I'm trying to sum up 2y2 + 2y3....2yn-1 since I already accounted for 2y1. I get an answer, but it isn't as accurate as it should be. For example, I get 6.071717974723753 instead of 6.101605982576467.
Thanks for any help!
function t=trapintegral(f,a,b,tol)
format compact; format long;
syms x;
oldtrap = ((b-a)/2)*(f(a)+f(b));
n = 2;
h = (b-a)/n;
newtrap = (h/2)*(f(a)+(2*f(a+h))+f(b));
while (abs(newtrap-oldtrap)>=tol)
oldtrap = newtrap;
for i=[3:n]
dx = (b-a)/n;
trapezoidsum = (dx/2)*(f(x) + (2*sum(f(a+(3:n-1))))+f(b));
newtrap = trapezoidsum;
end
end
t = newtrap;
end
The reason why this code isn't working is because there are two slight errors in your summation for the trapezoidal rule. What I am precisely referring to is this statement:
trapezoidsum = (dx/2)*(f(x) + (2*sum(f(a+(3:n-1))))+f(b));
Recall the equation for the trapezoidal integration rule:
Source: Wikipedia
For the first error, f(x) should be f(a) as you are including the starting point, and shouldn't be left as symbolic. In fact, you should simply get rid of the syms x statement as it is not useful in your script. a corresponds to x1 by consulting the above equation.
The next error is the second term. You actually need to multiply your index values (3:n-1) by dx. Also, this should actually go from (1:n-1) and I'll explain later. The equation above goes from 2 to N, but for our purposes, we are going to go from 1 to N-1 as you have your code set up like that.
Remember, in the trapezoidal rule, you are subdividing the finite interval into n pieces. The ith piece is defined as:
x_i = a + dx*i; ,
where i goes from 1 up to N-1. Note that this starts at 1 and not 3. The reason why is because the first piece is already taken into account by f(a), and we only count up to N-1 as piece N is accounted by f(b). For the equation, this goes from 2 to N and by modifying the code this way, this is precisely what we are doing in the end.
Therefore, your statement actually needs to be:
trapezoidsum = (dx/2)*(f(a) + (2*sum(f(a+dx*(1:n-1))))+f(b));
Try this and let me know if you get the right answer. FWIW, MATLAB already implements trapezoidal integration by doing trapz as #ADonda already pointed out. However, you need to properly structure what your x and y values are before you set this up. In other words, you would need to set up your dx before hand, then calculate your x points using the x_i equation that I specified above, then use these to generate your y values. You then use trapz to calculate the area. In other words:
dx = (b-a) / n;
x = a + dx*(0:n);
y = f(x);
trapezoidsum = trapz(x,y);
You can use the above code as a reference to see if you are implementing the trapezoidal rule correctly. Your implementation and using the above code should generate the same results. All you have to do is change the value of n, then run this code to generate the approximation of the area for different subdivisions underneath your curve.
Edit - August 17th, 2014
I figured out why your code isn't working. Here are the reasons why:
The for loop is unnecessary. Take a look at the for loop iteration. You have a loop going from i = [3:n] yet you don't reference the i variable at all in your loop. As such, you don't need this at all.
You are not computing successive intervals properly. What you need to do is when you compute the trapezoidal sum for the nth subinterval, you then increment this value of n, then compute the trapezoidal rule again. This value is not being incremented properly in your while loop, which is why your area is never improving.
You need to save the previous area inside the while loop, then when you compute the next area, that's when you determine whether or not the difference between the areas is less than the tolerance. We can also get rid of that code at the beginning that tries and compute the area for n = 2. That's not needed, as we can place this inside your while loop. As such, this is what your code should look like:
function t=trapintegral(f,a,b,tol)
format long; %// Got rid of format compact. Useless
%// n starts at 2 - Also removed syms x - Useless statement
n = 2;
newtrap = ((b-a)/2)*(f(a) + f(b)); %// Initialize
oldtrap = 0; %// Initialize to 0
while (abs(newtrap-oldtrap)>=tol)
oldtrap = newtrap; %//Save the old area from the previous iteration
dx = (b-a)/n; %//Compute width
%//Determine sum
trapezoidsum = (dx/2)*(f(a) + (2*sum(f(a+dx*(1:n-1))))+f(b));
newtrap = trapezoidsum; % //This is the new sum
n = n + 1; % //Go to the next value of n
end
t = newtrap;
end
By running your code, this is what I get:
trapezoidsum = trapintegral(#(x) (x+x.^2).^(1/3),1,4,0.00001)
trapezoidsum =
6.111776299189033
Caveat
Look at the way I defined your function. You must use element-by-element operations as the sum command inside the loop will be vectorized. Take a look at the ^ operations specifically. You need to prepend a dot to the operations. Once you do this, I get the right answer.
Edit #2 - August 18th, 2014
You said you want at least one for loop. This is highly inefficient, and whoever specified having one for loop in the code really doesn't know how MATLAB works. Nevertheless, you can use the for loop to accumulate the sum term. As such:
function t=trapintegral(f,a,b,tol)
format long; %// Got rid of format compact. Useless
%// n starts at 3 - Also removed syms x - Useless statement
n = 3;
%// Compute for n = 2 first, then proceed if we don't get a better
%// difference tolerance
newtrap = ((b-a)/2)*(f(a) + f(b)); %// Initialize
oldtrap = 0; %// Initialize to 0
while (abs(newtrap-oldtrap)>=tol)
oldtrap = newtrap; %//Save the old area from the previous iteration
dx = (b-a)/n; %//Compute width
%//Determine sum
%// Initialize
trapezoidsum = (dx/2)*(f(a) + f(b));
%// Accumulate sum terms
%// Note that we multiply each term by (dx/2), but because of the
%// factor of 2 for each of these terms, these cancel and we thus have dx
for n2 = 1 : n-1
trapezoidsum = trapezoidsum + dx*f(a + dx*n2);
end
newtrap = trapezoidsum; % //This is the new sum
n = n + 1; % //Go to the next value of n
end
t = newtrap;
end
Good luck!