Find line tangent of matrix loaded from file - matlab

I want to write a script that creates a matrix comprised of two lines with three real numbers on each line (in the range of -1 to 3) and saves it to a file.
I think this can be done by something like:
line(rand(3,2),rand(3,2))
Then I want to write another script that loads the file into a matrix and computes the tangent of every element in the matrix.
How do I solve this problem?

Let's first make random real numbers within the range
I'll make a data variable first
data=(3+1)*rand(2,3)-1;
then save it to the .dat file
save testtan.dat data -ascii
now in two steps I'll simply load it into a matrix and take the tan of every element and store it in mytangents
load testtan.dat
mytangents=tan(load('testtan.dat'))

Related

MATLAB: making a histogram plot from csv files read and put into cells?

Unfortunately I am not too tech proficient and only have a basic MATLAB/programming background...
I have several csv data files in a folder, and would like to make a histogram plot of all of them simultaneously in order to compare them. I am not sure how to go about doing this. Some digging online gave a script:
d=dir('*.csv'); % return the list of csv files
for i=1:length(d)
m{i}=csvread(d(i).name); % put into cell array
end
The problem is I cannot now simply write histogram(m(i)) command, because m(i) is a cell type not a csv file type (I'm not sure I'm using this terminology correctly, but MATLAB definitely isn't accepting the former).
I am not quite sure how to proceed. In fact, I am not sure what exactly is the nature of the elements m(i) and what I can/cannot do with them. The histogram command wants a matrix input, so presumably I would need a 'vector of matrices' and a command which plots each of the vector elements (i.e. matrices) on a separate plot. I would have about 14 altogether, which is quite a lot and would take a long time to load, but I am not sure how to proceed more efficiently.
Generalizing the question:
I will later be writing a script to reduce the noise and smooth out the data in the csv file, and binarise it (the csv files are for noisy images with vague shapes, and I want to distinguish these shapes by setting a cut off for the pixel intensity/value in the csv matrix, such as to create a binary image showing these shapes). Ideally, I would like to apply this to all of the images in my folder at once so I can shift out which images are best for analysis. So my question is, how can I run a script with all of the csv files in my folder so that I can compare them all at once? I presume whatever technique I use for the histogram plots can apply to this too, but I am not sure.
It should probably be better to write a script which:
-makes a histogram plot and/or runs the binarising script for each csv file in the folder
-and puts all of the images into a new, designated folder, so I can sift through these.
I would greatly appreciate pointers on how to do this. As I mentioned, I am quite new to programming and am getting overwhelmed when looking at suggestions, seeing various different commands used to apparently achieve the same thing- reading several files at once.
The function csvread returns natively a matrix. I am not sure but it is possible that if some elements inside the csv file are not numbers, Matlab automatically makes a cell array out of the output. Since I don't know the structure of your csv-files I will recommend you trying out some similar functions(readtable, xlsread):
M = readtable(d(i).name) % Reads table like data, most recommended
M = xlsread(d(i).name) % Excel like structures, but works also on similar data
Try them out and let me know if it worked. If not please upload a file sample.
The function csvread(filename)
always return the matrix M that is numerical matrix and will never give the cell as return.
If you have textual data inside the .csv file, it will give you an error for not having the numerical data only. The only reason I can see for using the cell array when reading the files is if the dimensions of individual matrices read from each file are different, for example first .csv file contains data organised as 3xA, and second .csv file contains data organised as 2xB, so you can place them all into a single structure.
However, it is still possible to use histogram on cell array, by extracting the element as an array instead of extracting it as cell element.
If M is a cell matrix, there are two options for extracting the data:
M(i) and M{i}. M(i) will give you the cell element, and cannot be used for histogram, however M{i} returns element in its initial form which is numerical matrix.
TL;DR use histogram(M{i}) instead of histogram(M(i)).

How to plot .txt file

I have a text file with two columns, called Fx1. In column 1 it shows deflection calculations and in column 2 it shows force calculation (about 100).
I loaded the text file into matlab as a variable, called Fx1.
How do I plot this text file as a graph, with deflection as my x value, and force as my y value? Apparently, I am supposed to define my variables, but I do not know how to do so when I'm getting the data from a .txt file.
This is what I did and I did not get the correct graph:
plot(fx1)
Any ideas?
Here is a screenshot of my text file:
Here is my text file. It continues for many values, I just copy and pasted the beginning
Here is a screenshot of my whole workspace, I am trying to make a plot for all txt files between Fx1-Fx9.
Matlab work space
You should separate fx1 into two vector. Use these commands:
x=fx1(:,2)';
y=fx1(:,1)';
plot(x,y);
In additional you can combine these three command to one command:
plot(fx1(:,2)',fx1(:,1)');

Numerical Matrix CSV -> Covariance Matrix

I have a CSV file containing a numerical matrix with over two thousand New York Stock Exchange listed companies' value over two years.
It seems like it should be really simple - I want to attain a covariance matrix formed from the CSV matrix.
As far as I'm aware I simply need to:
Import the data as numerical matrix (just the data no headings etc) using the MATLAB Import Data button.
Press save as on the workspace variable and make e.g. NYSE.mat.
In my function call cov(NYSE.mat);
This should access the matrix and return a large covariance matrix from my data. The cov() function works when i manually input an example matrix of for example:
[5 0 3 7; 1 -5 7 3; 4 9 8 10];
But for some reason whenever I try to call cov(NYSE.mat); only one number is returned, rather than a covariance matrix.
Can anyone tell me where I'm going wrong? I've been trying to figure this out for a while now and I feel the answer should be really simple.
I'm running on MATLAB R2016a.
Not sure you need to manually save the workspace name in step 2. As part of your import process you once you click the import button the variable should be loaded into workspace with the name of the file (maybe NYSE)
Try Load('NYSE.mat') and see what appears in your workspace.
Once you figure out the name of the variable, calling the function with that.
If your CSV file is without any header lines (not sure if any CSV file needs them) and contains only numbers, you can simply call
x = importdata('<nameofyourcsv>.csv');
and then
c = cov(x);
or even do it in one step:
c = cov(importdata('nameofcsv.csv'));
This function is equivalent of clicking on the button you mention. However, if your file contains header lines, you have to specify its number and call this function with more parameters:
x = importdata('nameofcsv.csv',',', nh); % nh is a number of header lines
x will no longer be a regular MATLAB matrix but a structure with following fields: data, textdata, and colheaders. cov(x.data) will calculate covariance. Not sure why you would need to save anything in a mat file, though. If you wish, you would probably need to assign a value from a data field to a regular variable and then save such variable. Otherwise, you will save the whole x structure.
For instance, the following file, test.csv:
95.01,76.21,61.54,40.57,5.79,20.28,1.53
23.11,45.65,79.19,93.55,35.29,19.87,74.68
60.68,1.85,92.18,91.69,81.32,60.38,44.51
48.60,82.14,73.82,41.03,0.99,27.22,93.18
89.13,44.47,17.63,89.36,13.89,19.88,46.60
can be imported by calling importdata:
>> x = importdata('test.csv')
x =
95.0100 76.2100 61.5400 40.5700 5.7900 20.2800 1.5300
23.1100 45.6500 79.1900 93.5500 35.2900 19.8700 74.6800
60.6800 1.8500 92.1800 91.6900 81.3200 60.3800 44.5100
48.6000 82.1400 73.8200 41.0300 0.9900 27.2200 93.1800
89.1300 44.4700 17.6300 89.3600 13.8900 19.8800 46.6000
EDIT
I downloaded the file and copy pasted this command from your answer:
c = importdata('nyse_data_matrix_no_tags.csv');
Then, I opened the file in a text editor and copied 1st and 20th row of numbers in the file and created a matrix in MATLAB:
x = [46.09,24.69,156.78,5.95,21.14,76.17,55.51,7.04,38.87,19.58,47.57,7.73,119.44,1.61,44.55,24.9,50.89,4.87,26.25,15.95,15.96,39.14,121.27,15.7,25.91,25.8,69.7,16.32,12.86,7.89,247.4,27.11,41.6,5.14,47.77,40.98,13.78,26.058,14.56,41.05,24.27,47.13,40.92,27,85.04,15.06,5.05,29.14,7.51,67.5,67.79,42.68,124.86,24.28,27.82,18.08,100.67,109.07,12.59,50.34,18.64,4.75,6.06,16.63,109.86,14.1,54.48,13.9,59.98,16.24,45.53,4.06,67.99,18.22,4.2,117.23,158.75,5.7,2.46,76.39,77.79,6.17,16.95,5.27,12.74,14.7,19.14,14.4,42.77,26.4,14.17,76.57,12.4,42.07,77.47,41.27,60.53,16.97,65.71,56.13,258.4,28.96,760.07,60.46,34.77,133.1,14.19,29.41,11.78,154.55,44.75,15.18,17.52,24.86,36.18,14.1,30.1,47.65,22.92,47.37,61.84,226.52,10.2,65.14,7.88,16.34,170.23,9.6,34.42,15.0999,20.34,58.7,16.6,14.72,14.32,20.89,14.32,13.2,6.05,422.96,21.43,47.55,13.28,27.98,8.16,45.15,15.1665,41.65,17.45,25.73,63.03,16.07,17.56,11.54,6.54,33.18,15.01,357.96,74.88,15.24,27.24,69.08,36.29,76.55,65.72,50.93,72.73,16.13,23.81,52.14,16.05,12.19,71.77,14.97,11.82,33.04,7.86,15.26,72.46,15.42,24.49,15.75,63.78,32.43,36.57,16.24,7.08,26.08,15.74,14.78,16.22,16.85,23.32,31.14,12.72,6.7,26.65,24,12.95,129.92,20.07,11.28,34.66,12.86,17.5,26.5,0.7038,1.22,128.98,23.33,19.2,15.64,8.34,45.01,38.14,50.31,13.11,17.4,47.15,79.29,8.24,28.92,24.97,1.92,77.16,126.5,8.97,3.97,12.85,30.75,37.82,2.36,10.37,52.28,1.56,53,47.33,41.32,10.65,15.24,39.5,94.42,12,54.25,48.03,3.72,6.34,18.5,23.47,26.74,8.74,6.7,7.08,70.92,27.3,65.43,18.776,7.82,16.8,12.0625,124.24,29.79,22.88,29.4,66.44,28.88,1.505,0.8642,10.37,47.14,99.83,133.87,46.41,4.88,57.63,14.45,11.2,34.99,11.06,129.25,7.71,35.2,2.29,2.53,1.65,13.74,15.6,11.84,59.79,33.85,62.48,72.34,25.15,131.2,61.13,2.17,5.1,53.35,26.9,43.15,10.8,63.61,130.91,81.42,45.29,17.58,415.79,118.64,73.88,9.85,79.22,43.39,4.86,32.18,68.36,60.21,34.15,19.47,23.39,29.96,39.58,14.66,5.98,70.87,25.9,38.64,90.45,165.2,46.57,83.18,16.48,134.15,54.68,62.51,12.25,24.33,17.69,60.73,11.51,15.6,85.99,80.81,59.9,17.48,30.73,104.34,0.94,86.03,82.73,14.41,34.05,17.2,11.98,13,52.5,39.2,19.58,101.59,26.38,44.13,18.72,23.3,32.05,27,26.12,13.13,18.58,6.07,73.74,3.53,42.4,12.21,15.72,16.71,26.27,26.69,4.52,35.99,26.1,17.31,45.61,67.9,11.15,13.08,1.1,9.7001,17.51,59.8,26.27,86.95,18.95,26.75,34.33,66.72,107.98,9.7,18.27,24.16,56.8,46.56,91.69,21.43,78.75,3.37,13.71,31.73,100.39,5.65,6.98,85.21,97.84,13.5,26.19,42.43,26.73,10.11,47.95,102.84,66.95,28.35,14.07,5.25,23.68,127.43,11.41,10.43,4.19,25.48,19.78,72.08,53.59,17.41,36.57,92.37,127.48,23.98,16.46,5.28,24.76,9.1,68.33,64.45,8.15,18.54,8.85,119.72,3.62,20.49,2.57,94.05,16.99,25.93,25.12,25.71,9.68,81.26,16.7,77.21,37.45,80.43,6.95,24.95,87.1,20.74,31.82,25.44,25.48,25.5515,46.96,19.11,43.49,10,8.68,16.99,120.79,3.95,1.91,76.54,7.8,33.71,14.59,13.5,15.99,42.6,38.86,46.76,8.1,23.14,23.04,17.39,15.4399,13.62,14,125.94,13.92,22.98,48.68,4.62,68.17,1.14,9.82,29.75,73.66,6.51,92.28,25.53,25.6,25.63,7.59,72.9,25.23,10.41,27.87,10.81,48.76,11.38,3.76,71.78,13.21,53.59,25.55,42.43,68.21,66.25,37.2,6.1,6.24,84.58,13.17,13.2,22.92,82.95,28.9,6.07,74.57,29.35,74.89,64.46,77.91,30.21,11.09,6.34,21.69,56.88,15.25,41.44,1.77,67.42,209.26,11.24,15.8,13.53,15.09,32.8,9.78,12.99,62.77,21.8,39.11,78.68,14.75,10.67,20.6,10.57,36.39,7.24,6.1,13.61,14.58,51.04,20.36,102.48,35.14,12.31,8.98,3.7,81.22,89.67,27.32,13.26,1.54,37.84,11.29,8.98,24.08,4.43,8.54,15.51,36.26,9.33,6.56,43.38,13.04,10.9,54.68,160,164.11,34.25,15.87,14.65,18.72,10.57,13.25,21.08,62.55,6.08,22.72,17.25,14.1,11.91,16.5,17.36,4.93,31.46,75.14,32.84,55.65,21.39,18.76,53.36,52.27,150,11.51,50.35,4.77,16.2,13.83,43.24,94.4,37.89,13.18,35.9,70.65,14.16,11.8273,12.67,22.93,11.11,13.55,9.55,14.24,26.44,13.49,69.92,9.88,157.12,14.93,6.53,13.5,6.83,28.27,13.07,48.33,59,9.67,2.04,28.2,5.82,31.87,65.9,33.14,36.14,30.08,8.49,64.92,4.76,141.98,8.63,10.11,17.27,19.65,30.24,26.53,40.67,26.87,26.25,39.18,1.54,33.93,16.59,7.33,15.36,13.91,1.1,17.12,4.47,15.67,18.68,1.79,15.54,81.13,21.34,27.59,7.46,10.77,503.01,19.74,18.46,15.26,47.57,30.24,6.55,65.34,4.13,13.2,21.55,21.03,29.36,27.27,47.72,10,26.17,7.45,7.62,3.48,18.15,8.2,20.66,97.23,59.46,13.37,7.8,76.6,19.31,9.21,24.18,77.53,0.9,10.8,153.17,23.32,1.18,25.83,42.06,1.48,11.49,24.78,18.24,21.24,6.59,44.54,33.28,64.61,227.17,30,48.14,29.72,45.5,79.45,26.83,4.96,81.03,30.76,72.15,34.48,129.3,65.48,33.48,67.43,34.31,15.05,60.38,32.59,26.84,1.7,32.48,2.31,113.96,1.13,7.3,31.13,12.27,44.48,163.75,4.55,4.93,49.64,7,0.42,4.66,62.44,41.56,21.6,8.18,26.89,33.78,3.79,47.23,27.86,0.5199,45.15,117.21,9.51,74.52,1.8,67.24,22.28,22.735,28.48,13.84,19.61,26.62,25.78,18.95,33.53,21.54,51.22,13.79,34.9,81.22,6.86,15.59,96.42,18.49,31.21,24.57,21.23,22.93,16.32,10.63,11.18,188.35,16.08,18.39,18.17,43.96,62.54,8.82,1.87,33.38,14.9,10.47,16.69,3.2,8.89,3.95,50.02,153.42,7.65,35.53,0.54,18.36,5.24,262.52,4.07,74.98,12.53,13.66,86.82,129.8,24.78,9.8,7.03,21.68,8.1,17.1,7.5,38.4,118.45,6.47,26.92,17.2,7.6,35.32,1.72,25.83,9.11,26.27,13,12.18,12.29,44.75,26.22,7.44,44.5,43.59,24.19,1.35,13.57,65.69,13.29,37.11,6.3,16.42,15.98,25.62,25.8,25.93,101.16,45.95,17.1,35.85,108.8,11.53,13.84,14.7,29.07,68.14,19.1,63.34,13.98,44.89,8.42,11.42,6.6,52.51,7.77,10.61,14.67,11.98,0.4476,15.65,14.54,21.3,122.3,22.92,13.03,7.38,5.41,22.4,117,14.97,17.58,9.98,22.08,10.13,23.79,64.75,9.23,16.0197,8.25,16.56,10.61,15.97,11.8,14.82,39.57,77.69,50.96,41.52,30.2,14.56,15.27,13.66,19.89,0.3292,2.93,26.22,72.39,12.44,33.06,26.14,26.96,5.15,29.29,5.31,8.85,29.28,15.21,21,13.64,130.69,15.04,26.49,18.08,8.27,24.92,51.81,15.55,12.13,24.95,26.79,45.76,82.08,29.35,5.82,36.58,27.79,62.53,26.16,5.64,16.33,13.71,37.44,11.68,90.18,90.17,14.71,14.2,18.3425,20.81,91.59,10.86,21.05,49.61,40.1,77.37,33.53,69.02,8.1,4.47,24.11,8.38,8.9401,39.17,24.28,40.52,117.73,1.99,50.87,47.66,9.32,11.02,6.59,21.86,13.2401,131.19,23.07,140.8,14.33,147.9,74.43,33.26,240.67,44.33,74.18,39.42,9.31,78.67,8.66,12.41,10.29,38.6,18.01,11.96,11.94,49.05,4.85,17.69,44.19,53.67,47.27,37.6,9.86,14.96,79.92,4.09,24.39,26.39,33.6,97.02,98.48,78.25,79.19,31.84,13.91,7.42,8.95,26.08,16.16,6.51,122.79,17.785,186.88,7.77,101.07,8.48,20.3,53.09,70.02,24.55,51.81,4.93,85.78,23.6,32.98,17.93,29.19,12.71,8.9,43.78,7.35,14.59,12.75,3.05,15.88,7.48,15.32,5.4967,24.88,41.18,5.37,25.09,26.12,22.12,18.47,8.23,17.21,14.3799,197.03,15.16,19.27,4.71,73.13,10.714,4.618,15.6,83.55,99.95,944.3,31.95,186.34,22,66.36,20.31,26.93,168.13,72.451,57.37,6.05,15.05,8.8074,15.5,11.38,60.84,17.25,12.82,65.95,10.1,51.415,109.8275,26.9,19.825,15.4293,36.63,16.29,14.34,15.065,8.44,14.4,16.77,14.84,56.78,13.945,25.58,51.74,10.52,9.3,13.52,68.56,25.73,10.75,73.77,11.61,5.34,116.61,116.86,381.835,6.41,37.74,1.75,1.79,140.44,9.2,25.3,4.81,5.585,58.08,22.97,15.12,16,14.62,16.65,15.09,15.83,30.81,14.73,2.89,8.24,10.74,55.84,11.03,16.31,30.76,16.54,4.64,6.11,5.3,14.99,9.62,14.83,123.98,35.9,29.06,410.2,16.19,56.83,12.49,41.27,72.28,18.24,23.03,21.98,71.37,25.02,13.86,18.36,10.773,13.66,37.26,4.16,54.94,14.14,16.5,3.22,20.7,10.8,1.1,12.84,1.42,14.92,4.03,15.25,13.8336,1.93,14.55,36.2,47.92,10.22,2.8,218.58,5.68,75.56,72.75,2.44,14.85,15.12,92.25,15.14,50.15,16.29,14.64,4.39,16.36,15.1,15.25,5.36,13.9,16.59,14.05,14.05,9.32,13.9,52.42,85.6,25.92,6.15,12.62,75.39,24.26,25.27,13.7,18.84,21.41,5.65,44.37,15.54,50.55,14.99,16.52,41.85,10.55,18.78,56.87,1738.1,80.51,60.58,48.96,59.1,1.49,19.69,16.42,14.9,14.375,15.15,14.76,15.4,12.04,63.98,90.63,46.89,10.77,13.28,50.63,1.76,33.79,16.16,27.71,8.73,31.48,62.99,33.13,19.92,7.89,33.58,35.78,46.53,38.53,23.63,23.77,84.4,19.83,28.76,38.37,7.02,3.73,9.61,15.47,43.98,10.45,19.1,5.11,46.7,23.07,61.76,75.6,3.99,11.95,27.51,99.32,37.51,10.17,13.98,26.18,4.71,20.98,53.83,31.34,25.83,53.61,18.87,6.89,7.39,7.81,62.98,18.95,10.9,9.62,15.03,16.79,27.26,20.91,5.66,16.08,27.44,26.23,44.62,22.25,20.49,103.66,2.53,4.44,43.92,15.08,35.31,43.14,10.1,9.07,11.97,20.15,20.48,83.17,1.94,20.18,32.86,18,115.36,11.46,26.27,14.23,44.33,9.84,19.58,10.13,16.95,84.53,4.44,5.49,40.79,26.17,2.54,16.71,69.64,54.29,23.04,46.29,17.98,49.87,45.06,101.78,27.09,16.72,13.53,7.91,13.27,16.12,12.66,7.08,88.33,13.53,14.1,34.57,60.16,77.17,36.77,60.23,37.78,42.56,17.22,110.43,39.25,1.91,5.22,58.17,4.8,26.87,3.34,52.44,26.2,57.87,16.53,75.15,245.43,103.59,27.06,3.17,11.88,81.13,72.92,14.26,37.51,37.51,8.91,97.21,0.9614,24.1,113.44,164.2,11.21,12.02,6.24,8.67,66.54,19.82,42.46,0.4498,54.44,67.66,7.57,51.06,3.26,24.43,34.63,58.16,6.49,39.18,76.24,9.84,19.3,11.55,45.79,180.42,79.59,3.6,16.22,31.99,59.67,9.7,13.17,5.41,98.19,20.12,59.5,12.99,7.91,28.41,40.99,51.01,78.23,11.47,28.75,26.63,54.23,96.18,7.23,67.31,21.02,16.98,60.5,19.01,7.54,20.58,19.72,115.86,65.41,118.74,28.8,174.25,51.32,18.66,13.09,46.21,76.22,18.38,49.8,13.18,7.3,3.96,136.61,12.21,14.39,21.83,62.39,15.55,26.25,29.47,3.81,14.03,17.05,160.73,4.59,80.74,16.5811,1.2,29.52,35.43,8.3,10.85,16.2,11.87,13.3,71.67,27.33,60.52,9.84,16.14,12.8,1.8,2.42,33.76,47.19,12.62,36.74,13.25,16.07,28.24,15.96,9.15,4.05,8.62,0.5429,34.32,49.07,11.84,293.03,2.22,89.6,25.47,58.42,30.13,143.23,19.4,7.14,36.5,20.46,37.11,30.65,79.96,34.92,101.48,21.29,33.24,68.79,4.22,11.36,38.63,9.02,160.35,28.77,19.05,34.19,72.25,10.46,31.28,96.12,40.86,50.86,1.35,48.37,36.98,20.18,117.48,13.74,201.65,34.85,19.46,46.23,23.88,11.91,110,9.77,16.48,12.72,39.84,5.41,29.03,17.25,103.26,15.36,36.63,38.09,71.67,42.97,78.07,16.86,16.47,6.05,26.51,16.91,25.04,60.29,1.26,154.1,27.67,69.33,29.82,27.84,4.73,10.71,26.4,114.37,34.76,14.74,74.67,10.56,6.56,2.28,88.4,29.03,71.35,31.41,115.33,81.56,9.2,49,15.67,40.09,7.22,5.51,14.13,103.38,19.91,13.95,11.92,70.67,59.99,5.29,44.99,24.99,28.64,25.61,17.31,266.23,26.72,25.77,28.55,5.55,100.29,27.69,10.17,10.83,62.27,55.45,19.42,46.89,20.23,21.13,172.71,16.91,12.11,39.7,13.35,6.37,67.69,29.95,85.31,67.72,16.7,20.74,97.86,9.72,62.52,77.31,9.67,9.29,8.64,34.09,10.59,57.33,39.4,104.5,44.5,60.64,154.15,54.89,105.49,3.66,6.18,29.43,5.93,48.71,22,12.28,169.55,60.98,19.52,39.54,24.25,42.45,18.07,18.85,43.41,2.95,6.6,114.22,28.92,48.51,5.29,7.47,26.23,61.28,78.75,9.14,53.37,10.18,89.37,7.71,6.44,35.18,18.74,32.1,58.58,25.94,25.57,25.65,7.21,8.59,75.01,19.97,39.37,20.79,20.84,43.69,30.96,160.22,38.66,46.7,8.36,9.07,23.13,14.75,7.49,33.71,28.42,26.87,38.33,43.94,19.64,138,56.34,8.25,46.6,2.01,10.5,46.07,117.09,140.68,35.69,89.39,16.82,104.97,74.11,5.09,42.54,28.31,37.91,21.2,3.26,41.98,102.32,19.23,55.7,25.7,25.93,81.26,61.1,108.46,108.45,85.57,18.9,74.53,14,25.85,9.88,35.01,63.16,4.78,15.06,14.49,22.2,2.11,12.35,13.79,53.81,44.61,14.18,9.42,116.83,137,14.42,64,97.18,3.42,13.6,14.05,48.17,25.48,13.49,30.72,11.2,15.78,68.42,51.63,32.15,4.22,51.95,27.55,40.18,77.04,4.18,36.79,140.05,108.68,38.41,59.96,105.5,72.79,25.02,20.17,13.44,62.32,50.91,95.22,26.076,49.14,6.76,3.02,68.92,21.8,42.62,57.25,179.69,11.49,12.14,11.1,13.73,17.08,45.06,13.35,62.62,23.28,9.73,52.25,27.11,71.09,14.52,21.59,30.65,40.03,67.61,11.41,15.19,10.64,34.29,56.11,56.44,30.77,39.05,52.14,136.16,14.58,77.42,2.14,813.78,33.86,59.02,14.77,19.64,17.91,20.05,30.37,68.38,17.44,1.21,120.33,42.7,5.03,33.58,90.67,25.13,29.96,7.31,53.42,10.12,46.3,540.23,4.38,21.64,83.73,5.45,119.4,26.99,12.77,14.28,29.64,11.94,48.14,5.03,5.87,6.16,12.26,8.63,5.89,39.26,2.1,1.36,1.26,2.5,0.62,4.12,2.93,2.18,2.12,5.25,19.03,0.3024,34.93,2.77,16.49,16.56,16.87,12.31,1.72,124.2,0.8722,3.26,0.4964,13.2,20.21,3.47,60.5,20.56,30.64,36.55,11.96,10.97,9.59,48.12,12.96,12.91,16.4,16.5,3,2.515,15.38,15.29,0.58,0.2101,9.79,0.135,13.0101,13.5,13.93,13.47,13.81,13.83,13.78,14.42,14.66,7.91,0.6724,0.3199,2.78,5.77,0.8812,0.71,25.94,1.56,11.79,12.23,6.51,0.9442,4.15,0.4398,2.62,3.67,1.76,0.6489,3.1,30.31,3.48,1.73,8.7,2.19,0.1244,0.1183,4.7,14.19,31.89,7.79,0.4569,1.94,0.5899,12.98,0.8,0.91,2.5,17.57,4.05,0.2399,14,13.18,2.36,0.289,1.03,10.97,63.6,16.08,11.12,16.46,8.52,14.47,5.3801,1.95,3.42,4.39,0.36,4.57,2.75,0.5131,6.37,0.134,16.28,15.34,9.93,15.37,14.36,11.3,33.75,15.68,7.03,0.4907,93.1,0.2569,2.17,15.75,2.84,0.8011,0.788,31.33,0.2799,9.13,8.6001,20.5,44.44,0.7498,2828.02,0.475,1.59,11.705,1.81,0.4725,0.5109,0.82,18.2368,0.331,66.17,0.9543,0.82,0.7501,0.611,1.01,1.3,5.05,0.87,8.01,12.5901,13.04,10.45; 42.73,24.76,150,5.77,20.71,74.78,55.37,7.12,38,18.12,47.27,7.73,116.36,1.53,42.68,24.53,48.12,4.92,26.23,13.99,13.93,36.84,108.6,15.1,26.12,25.67,69.24,15.64,10.78,6.72,216.02,25.4,33.36,5.02,47.32,37.32,12.5,25.62,14.16,38.27,23.77,43.8,42.5,26.17,87.29,15.15,3.46,29.67,8.65,65.57,67.54,40,123.54,24.18,29.23,17.73,95.34,106.56,13,46.95,24.27,4.78,6.91,25.59,105.72,16.08,48.25,13.21,55.8,17.1,42.87,4.1,60.34,17.9,3.95,113.03,157.65,4.66,2.29,74.49,77.63,5.156,15.01,4.73,12.18,13.19,18.94,13.56,38.95,26.5,12.92,76.37,11.9,39.79,74.94,39.73,57.63,15.79,64.34,54.04,252.05,28.39,780.81,55.62,33.36,134.42,14.14,27.79,12.13,143.53,45.63,15.68,17.6099,23.63,33.73,13.27,31.25,47.78,22,46.55,62.6,219.45,9.45,62.11,7.53,15.51,167.15,9.37,35.84,15.15,20.25,57.05,16.73,14.03,15.15,21.68,13.5,12.95,5.77,361.44,20,45.47,13.1493,26.72,7.98,43.36,15.12,39.74,17.21,24.17,60.83,16.14,17.06,10.64,6.51,33.12,15.01,355.6,72.84,14.76,25.95,63.07,36.79,74.35,63.84,50.21,71.28,16.45,22.54,49.04,16.21,11.7,68.62,14.79,11.67,31.86,8.52,15.2,69.08,13.17,24.42,15.695,61.23,26.99,35.29,16.31,7.2,26.24,15.54,14.676,15.41,15.91,22.05,32.12,12.48,4.69,24.92,23.65,12.62,126.5,18.46,9.84,33.75,12.42,16.2,26.35,0.73,1,131.38,22.35,19.1,15.76,7.32,44,33.77,48.56,12.2,17,46.43,77,7.5,28.09,23.02,5,71.7,125.38,8.03,3.7,13.12,28.81,37.62,2.38,11.34,47.1,1.19,54.28,44.8,39.22,10.22,15.06,38.667136,90.46,11.72,55.05,51.05,3.75,6.09,17.3,21.41,26.98,8.02,5.86,6.96,70.73,28.08,59.95,18.42,7.47,14.85,10.75,116.53,27.85,21.76,26.66,61.4,25.71,1.36,0.7901,9.52,48.37,97.37,126.08,47,4.17,55.61,13.77,11.52,34.34,11.3,128.06,7.5,36.89,2.53,2.45,1.92,13.22,15.09,11.57,55.3,32.07,54.38,72.65,25.5,118.7,57.38,1.96,3.02,47.95,26.1,40.55,9.85,59.99,132.88,78.76,42.69,16.91,457.01,114.39,65.76,9.91,77.3,42.09,4.91,32.44,56.43,59.69,35.57,19.17,22.11,28.78506072,38.22,14.41,6.21,69.36,24.4,38.01,89.43,155.41,43.73,76.84,14.55,137.21,53.86,66.5,11.06,22.88,16.63,61.17,11.56,15.03,84.79,86.63,55.48,15.4,29.57,101.26,0.69,81.42,75.89,11.31,30.84,16.28,11.87,13.14,33.72,38.18,19.32,101.5,27.42,36.97,18.89,23.56,32.16,28.46,25.64,12.09,17.48,5.45,72.28,3.18,41.07,12,14.5,16.6,23.78,26.7,4.3,32.7,25.86,16.92,42.77,64.28,11.01,12.18,1.06,9.31,17.79,60.64,26.7,84.15,18.77,26.31,33.03,63.4,109.41,9.44,18.65,23.97,55.3,42.46,83.69,21.05,75.72,3.19,13.49,29.15,98.12,5.61,6.39,82.82,101.71,13.97,28.88,42.06,26.5,13.77,45.51,94.67,62.82,28.92,13.57,5.54,23.2,118.34,11.24,10.36,4.1,24.18,19.05,66.13,51.54,16.37,34.38,95.56,121.46,26.03,16.23,5.81,23.39,9.34,63.81,59.11,7.04,17.84,8.74,120.32,3.48,22.69,2.81,91.33,16.38,26.21,25.87,26.36,9.7,81.08,19.47,75.59,32.71,73.05,6.74,24.96,70.88,18.67,30.92,25.41,25.77,25.54,45.03,18.18,38.88,9.6,6.83,18.73,117.13,2.67,1.63,74.96,7.6,33.59,13.41,12.48,14.62,42.32,40.29,45.55,7.97,21.31,21.03,17.52,15.05,12.98,13.15,122.65,13.51,23.8,43.08,4.73,63.4,1.11,9.25,29.82,71.94,6.25,94.61,25.47,25.5,25.6,8.26,73.64,25.3472,9.25,27.04,10.43,47.6,10.72,3.73,74.8,12.43,52.91,25.95,40.24,65.54,57.95,31.03,6.08,6.01,80.5,12.78,12.84,22.79,78.1,26.27,5.45,71.78,28.39,75.98,69.88,70.64,29.83,9.78,5.24,21.61,57.63,14.74,39.23,2.22,67.5,229.93,10.46,16.22,12.97,14.48,32.22,9.72,12.03,62.07,21.32,35.18,77.07,14.77,10.36,20.38,10.38,34.93,7.27,5.86,13.4,14.27,49.49,19.9,105.59,35.46,12.1,8.76,3.71,76.56,93.4,26.7508,13.35,1.5616,37.34,11.09,8.77,23.13,3.69,8.75,15.99,33.96,8.88,7.2,40.96,12.63,11.03,50.51,151.66,159.37,33.97,14.26,14.12,15.95,10.97,12.71,20.91,60.72,6.19,24.8,19.69,13.76,11.67,15.79,16.34,5.08,31.41,71.77,31.24,59.04,21.3,19.4,51.33,45.98,150.93,11.97,46.99,3.62,15.94,12.44,42.09,92.59,34.16,12.75,33.76,68.09,13.78,11.29,11.59,22.82,11.32,12.13,8.73,14.23,24.79,13.18,67.95,7.87,156.56,14.55,6.32,12.9,6.42,28.01,11.1,44.19,58.5,10.19,2.02,27.25,5.52,30.68,65.85,31.31,36.24,26.55,8.14,63.6,4.5399,145.31,8.23,10.05,16.99,18.57,30.09,26.28,35.4,26.45,26.04,34.48,2,32.72,15.9,6.69,16.28,14.04,1.23,16.22,4.14,15.55,18.02,2,15.0649,81.11,19.31,28.13,7.19,10.3699,486,19.44,17.82,14.61,45.82,29.75,6.4,64.72,4.8,13.02,19.25,18.88,31.18,29.1,44.92,8.97,25.04,7.69,7.13,3.66,17.73,8.91,19.92,97.11,61.24,13.39,7.44,74.37,17.86,8.96,23.74,77.81,0.94,10.21,158.07,23.8101,1.13,25.82,42.07,1.68,11.36,21.6,16.51,20.69,6.53,43.16,31.11,58.84,227.76,31.76,48.71,26.58,40.05,73.47,26.96,3.89,77.69,31.86,72.09,34.24,134.19,64.38,33.98,61.59,32.8,14.86,58.14,30.69,28,1.68,31.8,1.57,103.61,1.45,7.19,30.83,11.66,44.5,153.62,4.15,4.72,48.09,6.87,1.03,4.28,61.99,40.15,21.93,7.15,27.61,33.08,3.2,42.95,28,0.47,45.62,114.19,9.93,74.87000442,1.58,58.65,22.12,22.22,28.77,11.56,19.07,26.41,23.68,17.34,31,19.52,47.73,13.99,40.21,76.11,6.56,15.89,93.16,18.9,30.46,24.89,19.17,23.46,16.61,10.23,8.06,165.81,13.99,18.01,18.9,44.81,60.52,8.49,1.86,27.86,14.41,10.21,18.12,3.83,8.58,3.8,50.25,148.84,6.99,31.25,0.71,18.33,4.1,262.14,4.42,73.91,12.1,13.20970759,82.33,126.16,23.09,9.72,6.89,21.29,8.03,15.6,7.22,38.87,120.44,6.3,25.71,17.36,7.56,33.25,1.57,24.45,8.72,26.49,12.04,11.84,12.28,45.4,26.41,7.56,31.41,42.6,23.86,1.34,13.53,65.92,13.47,38.08,5.74,15.31,15.41,26.02,25.712,25.8,98.08,44.54,18.55,34.85,104.53,10.66,12.91,13.9,29.06,71.17,17.01,57.81,13.55,41.32,7.8,11.16,6.27,49.81,7.64,10.32,13.94,10.81,0.7498,15.52,14.21,20.62,109.04,23.01,11.65,7.36,5.17,21.85,114.23,14.3,16.77,9.77,16.49,10.03,23.69,61.77,9.17,15.36,7.87,15.77,10.07,15.29,11.25,14.1294,45.23,77.31,47.89,39.54,28.44,12.82,14.53,13,17.54,0.3641,2.55,26.31,63.92,11.88,31.72,25.69,26.505,4.6,27.83,5.09,8.76,29.12,14.53,21.01,12.98,130.06,12.4829,22.18,17.03,8.19,23.47,51,12.27,12.14,23.41,26.5,45.83,82.63,25.37,4.86,34.89,26.94,64.14,27.98,5.83,14.68,14.03,35.15,11.42,90.18,90.19,14.23,14.2,17.96,20.06,84.41,9.49,17.12,49.09,39.65,78.86,33.65,67.42,8.02,3.76,18.32,8.16,8.72,37.4,23.33,38.52,114.6,1.95,49.43,43.7,9.16,10.56,6.65,20.49,12.67,125.76,23.95,138.26,11.58,135.78,75.96,31.26,244.94,43.04,69.13,37.05,9,75.4,9.47,11.17,10.59,37.12,18.04,11.86,11.52,48.01,5.05,17.57,41.22,53.75,45.64,37.03,9.42,14.2,81.25,3.82,23.04,25.5,31.21,95.85,101.87,76.99,77.16,31.35,14.14,7.16,9.19,26.91,16.35,6.66,130.12,17.82,167.3,7.4,94.74,8.25,19.75,52.51,68.69,22.35,50.39,4.59,81.34,21.87,34.95,17.28,28.62,12.61,7.18,43.51,7.12,14.2,12.4392,3.04,15.53,7.53,14.95,5.39,23.75,40.57,5.33,21.94,26.2,20.78,18.4,8.35,16.08,14.67,194.42,15.58,18.03,4.52,69.18,9.39,4.635,15.05,83.71,98.34,958,29.91,184.75,19.84,63.95,20.38,25.15,168.32,69.68,53.16,5.85,15.33,9.14,15.6346,10.9,58.4,17.21,11.96,64.58,10.38,46.74,99.94,24.84,24.63,15.7076,35.49,15.5,14.35,14.32,8.48,14.67,16.79,13.64,53.88,12.3,25.89,47.77,8.74,9.03,12.7,71.11,25.61,10.45,73.73,11.24,4.59,113.23,113.21,367.93,6.47,33.67,1.78,1.76,127.6,8.66,24.38,4.51,5.89,57.46,21.28,14.94,16.22,14.53,16.88,15.18,16.01,29.14,14.41,2.56,7.14,8.3,52.61,11.04,15.56,28.02,14.96,4.48,5.8,5.07,13.27,9.06,14.79,121.15,33.21,29.22,405.47,16.15,54.74,12.36,38.63,73.47,13.33,22.42,19.85,69.31,23.96,13.83,17.87,10.84,13.66,36.3,3.9,57.99,14.29,16.38,2.68,19.74,11.1,0.7972,12.62,1.32,14.84,4.16,14.99,13.65,1.67,14.2,36.65,47.36,10.19,2.39,217.98,5.18,67.47,67.38,2.49,14.9101,14.98,87.78,15.16,48.04,16.4,14.66,4.01,16.26,14.9,15.22,4.52,13.1,15.63,13.92,11.83,8.35,13.37,47.97,88.18,24.73,5.89,11.49,66.05,23.18,24.66,13.64,18.25,21.08,5.83,46.78,15.31,47.44,14.8,16.29,39.8,10.56,18.1769,54.18,1652,74.88,58.43,48.54,57.45,3.29,18.28,16.68,14.73,14.4,15.09,14.6,15.3,12.17,64.14,88.71,45.68,9.54,13.13,49.41,1.99,33.03,14.84,26.89,8.23,30.99,60.32,32.83,18.97,7.94,32.53,31.42,40.29,37.61,21.53,23.34,84.26,19.57,30.51,36.94,6.75,3.93,9.55,13.82,42.61,10.4,19.09,5.1,45.36,22.22,60.82,76.48,3.83,10.09,23.76,100.8,35.59,9.68,13.8299,22.69,5.01,26.18,49.77,28.86,28.22,57.08,18.14,7.35,6.69,7.52,59.24,18.25,10.96,9.71,14.5,17.13,27.61,20.4,4.24,15.48,25.48,26.1,46.36,22.88,18.66,106.1,2.5,2.82,43.08,15.28,33.19,42.45,9.82,8.87,12.2,19.49,19.48,82.41,1.61,20.31,33.56,16.83,112.54,10.97,26.26,12.72,36.72,9.54,18.19,9.94,16.9,85.1,4.36,5.52,40.98,26.65,2.41,15.37,66.33,54.48,22.33,44.32,17.24,47.45,42.5,102.18,26.27,16.62,13.59,7.88,13.21,14.92,12.5,7.83,86.18,13.63,13.8001,33.27,59.22,74.44,36.93,59.94,36.56,41.61,15.84,107.49,38.91,1.86,4.97,60.77,4.7,26.82,3.16,49.16,26.76,51.04,11.7,76.43,264.69,99.79,25.91,3.47,11.67,78.25,68.79,13.99,37.08,37.07,8.25,84.16,0.8522,23.41,113.6,167.03,10.9224,12.15,6.25,9.13,65.31,17.91,40.79,0.4101,50.8,68.44,8.01,51.51,2.98,22.82,31.82,57.82,6.13,38.62,77.02,9.3,17.3,12.02,42.86,184.08,78.69,2.9075,13.89,33.35,52.31,9.13,13.23,5.42,95.63,20.99,65.95,13.55,7.5501,35.04,38.6,51.56,71.93,9.68,28.7,26.5,51.29,86.88,7.5,66.85,22.13,15.83,57.81,17.05,7.46,18.45,19.37,113.51,61.99,114.01,27.66,177.15,50.49,18.28,12.85,42.26,72.17,18.31,48.84,12.4,7.49,4.39,131.91,11.75,13.13,20.8,59.97,10.37,25.38,30.05,3.49,13.34,17.08,155.45,4.6,77.25,16.2999,0.934,29.3,33.23,7.84,10.45,14.55,12,12.59,70.57,27.04,58.35,10,14.88,10.28,2.09,2.53,31,47.8,12.04,33.69,13.39,15.4,25.44,15.51,8.74,3.94,8.82,0.6112,33.74,46.08,12.7,296.18,2.76,104.1,24.25,58.36,26.73,131.51,19.1,6.2,34,20.25,35.46,31.44,74.09,33.9,104.1,18.92,29.05,66.83,4.22,10.1999,37.26,8.34,163.29,25.84,18.34,33.91,66.17,11.16,30.41,79.67,39.24,50.16,1.22,47.28,36.96,19.69,117.73,13.52,204.04,31.79,15.78,47.26,21.29,11.96,105.37,9.1,14.79,11.24,37.97,6.23,29.64,15.22,114.7,15.85,34.11,36.47,71.76,41.35,75.83,16.03,15.7,5.34,24.84,16.77,25.04,60.03,1.32,161.9,26.57,71.37,33.6,26.29,4.48,9.71,26.4199,113.65,34.67,11.86,69.19,10.2832,5.64,2.15,81.34,27.63,66.56,29.42,111.82,80.81,8.96,50.18,14.9101,39.55,7.04,5.41,14.51,99.73,18.54,13.26,9.71,71.51,52.38,5.77,43.79,25.21,27.31,25.3892,16.5384,247,25.9599,25.5,28.13,7.35,93.9,27.53,10.79,10.36,58.72,51.73,19.11,45,18.5,23.04,161.97,15.93,12.89,36.18,14,6.34,75.6,28.41,86.79,64.86,15.994,18.83,93.48,9.51,66.37,74.28,9.84,9.24,8.43,33.47,9.95,56.57,40.87,101.38,44.3,58.55,148.92,53.07,105.69,3.96,5.77,26.71,5.95,49.04,20.45,10.88,162.1,58.01,18.81,35.46,20.01,41.42,17.28,17.29,40.33,2.82,6.3,112.64,26.1,44.12,5.27,8.25,22.99,68.65,75.61,9.07,53.28,10.89,87.69,7.53,5.49,28.77,16.93,31.76,56.22,26.5,25.85,25.7401,6.03,8.52,73.39,17.69,37.86,20.07,20.07,38.7,29.07,148.17,37.66,43.78,7.71,8.06,21.2,15.01,7.65,36.81,27.64,25.07,37.7,41.81,20.87,133.29,56.32,7.4,45.66,1.77,9.84,44.71,111.33,129.74,33.85,83.84,12.96,101.79,60.87,4.87,41.94,27.98,38.29,20.16,3.28,39.63,101.46,18.22,55.85,25.52,26.35,77.89,58.71,106.91,106.8875,82.26,18.76,74.11,14.07,22.74,9.85,32.93,60.84,3.9,14.49,14.35,21.27,1.82,12.3,13.61,54.78,46.51,13.6,9.1,116.12,134.97,14.18,56.62,96.69,3.28,13.6,14.19,47.52,24.93,12.36,27.7,10.77,15.9,66.72,50.39,30.56,4.05,51.47,27.54,37.84,79.17,4.41,34.21,134.96,105.34,35.36,55.08,92.92,69.47039835,24.05,19.76,12.71,60.18,48.91,90.11,26.55,49.2,5.82,2.9,68.28,20.82,40.56,56.32,171.54,11.4,11.94,10.99,11.91,13.69,45.01,10.93,61.78,19.05,9.11,46.67,23.65,66.85,14.14,21.6,30.4,35.89,63.93,10.56,14.96,9.02,29.15,52.18,56.31,29.22,38.54,54.51,133.93,13.7,71.27,2.27,825.61,32.84,56.14,13.07,19.25,17.79,17.89,31.23,69.13,14.81,1.75,115.34,41.85,4.97,33.71,89.67,24.5,27.18,5.98,53.57,9.24,43.24,526.42,3.48,20.92,81.57,5.13,117.44,23.66,12.76,14.3,32.23,12.09,46.25,4.9,5.77,6.24,11.94,8.45,6,38.21,2.05,1.18,1.19,2.17,0.73,3.23,3.05,1.46,2.06,4.68,18.27,0.3199,31.48,2.59,16.44,16.85,16.9,11.91,1.74,122.34,0.82,3.33,0.55,13.02,19.46,2.6,55.43,18.83,28.86,34.75,11.76,10.8,9.5,48.62,12.54,12.8,16.6,16.22,2.9,2.33,16.09,14.56,0.5024,0.24,9.84,0.15,13.19,13.82,14.1466,13.15,13.88,14.07,13.68,14.38,14.85,7.69,0.7663,0.324,1.89,5.35,0.9,0.77,23.7,1.2863,11.39,11.24,6.43,0.97,4.2127,0.3302,2.21,3.5,1.54,0.6,2.65,27.28,2.75,1.78,9.52,2.35,0.11,0.1212,5.68,13.86,31.34,7.6,0.42,1.56,0.6299,12.7,1.05,0.94,2.37,17.12,3.66,0.21,12.61,13.18,1.52,0.3221,0.6634,10.9,63.43,16.37,10.54,16.52,7.5,14.62,5.24,2,3.53,4.53,0.3581,4.75,2.59,0.7299,6.13,0.165,16.42,15.63,9.37,15.04,14.15,10.95,31.46,17.57,6.71,0.525,89.54,0.225,2.27,15.71,2.89,0.84,0.79,30.57,0.2603,8.49,7.26,19.76,44.32,0.6701,2930.11,0.51,2.29,12.6,2.07,0.49,0.5058,1.06,17.75,0.3579,63.51,0.8301,0.75,0.78,0.4875,0.7495,2.52,4.35,0.82,7.66,12.36,12.96,10.735];
I compared matrix x with the 1st and 20th row of c and they are equal:
isequal(x,c([1 20],:))
ans =
1
importdata seems to be working as expected.

Import multiple text files onto Matlab to analyze the data [duplicate]

This question already exists:
Generating vectors from multiple matrices
Closed 6 years ago.
I am really new in matlab. So i am trying to learn the very basics. I have 8 tsv files with names like 2004.07.01.0000.tsv, 2004.07.01.0300.tsv, where each file has 72 rows and 144 columns. I am trying to automatically import all of those files to matlab in a matrix form to calculate the mean, median, skewness (for data correction). What I did is that I imported one file (2004.07.01.0000.tsv) using matlab gui, then I generated a function called importfile. I am trying to use a for loop to access all the data in those files but I could not figure it out. I tried (not sure at all):
for fileNum=1:8;
startRow=1;
endRow=72;
filename
a=importfile(filename, startRow, endRow);
end
If your importfile() function works correctly, in this manner at every for-loop iteration you'll overwrite a with the most recent imported file. You should concatenate all your files (i.e. matrices) instead.
A matrix concatenation can either be done by rows (i.e. horizontal concatenation) or by columns (i.e. vertical concatenation). As I understand, you want a vertical concatenation in order to generate a unique matrix with 144 columns and as many rows as your single files contain.
Thus you should change the loop as follows
myMatrix=[];
for fileNum=1:8;
startRow=1;
endRow=72;
filename
myMatrix=[myMatrix ; importfile(filename, startRow, endRow)];
end
The vertical concatenation can be done by means of the ; operator, thus an instruction like A=[B ; C] will create a matrix A by concatenating matrices B and C. In your case you initialize myMatrix as empty and then you will vertically concatenate (in an iterative fashion) all outputs from importfile(), that are your .tsv files.
At the end of the loop, myMatrix should have size NxM where M is 144 and N is the sum of the number of rows across all your files (8*72).
Update
If you have to pass explicitly the filename to the importfile() function you can create a cell array of strings in which each element of the cell is a filename. Thus in our case the cell array will be something like:
filenames={'filename1.tsv','filename2.tsv',...,'filename8.tsv'};
obviously you must replace the strings inside the cell with the proper filenames and finally you can slightly edit the loop as follows
myMatrix=[];
for fileNum=1:8;
startRow=1;
endRow=72;
myMatrix=[myMatrix ; importfile(filenames{i}, startRow, endRow)];
end
In this manner, at every loop iteration the i-th filename will be given as input to importfile() and hopefully it'll be loaded.
For this to work you should (let's make things simple)
place your Matlab script and obviously the function importfile() in the same folder containing your .tsv files
set said folder as the Current Folder
or if you have the .tsv files in a given folder and your scripts in another folder, then the Current Folder must certainly will be the folder containing your scripts and the filenames inside the cell array filenames must contain the entire path, not just the proper filenames.

gmdistribution.fit and .mat files

I've a very large .mat file which contains a lot of data which I need to visualize. .mat file contains 5 row with each row containing 1x5 matrix - which contains the data. I need to concatenate specific rows together, then apply gmdistribution.fit to it. I'm not sure as to how exactly I access specific elements of the .mat file to concatenate them together.
Say I wish to concatenate first row - > 1st row with 2nd row - > 1st row. How would I go about doing this? I'm new to matlab and finding it difficult to grasp it.
Also, could you explain gmdistribution.fit, please? I read the documentation in their website, however, I still am not exactly sure about the parameters.
Thankyou for your help.
To access first row:
matrix(1);
To access second row:
matrix(2);
To vertically concatenate 1st and 2nd rows into a new matrix:
newMatrix = [matrix(1) ; matrix(2)];
And you can do this with any row in your matrix.
As for gmdistribution.fit, it is just trying to fit your matrix to a Gaussian distribution. Without a more specific question, all I can do is point you to the documentation, which holds and explains all the parameters.