I am trying to register two volumeetric images(img1 and img2). The size of the img1 is 40x40x24. The size of the img2 is 64 x64x11.
So far, I have extracted their features (vol1 and vol2, the same size as the images) and then matched them.
Now, I have a set of corresponding points in two feature volumes that is stored in pairs which is a matrix of size 100x6 (every row of pairs is [x, y, z, X, Y, Z] where (x,y,z) are the coordinates of a voxel in vol1 and [X Y Z] is the coordinates of corresponding voxel in vol2).
Now, I am trying to use RANSAC algorithm to estimate the 3D affine transform, T. I have written the below code, but I think there is a problem with it because when I get the output transform T and multiply it by a sample voxel coordinates from vol1, I get some negative coordinates!!!
Below is my implementation for 3D RANSAC algorithm. I have used 2D RANSAC implementation in this link. Please let me know if you see any problem.
function [bp] = ransac(data,bpI,iter,num,distThresh)
% data: a nx6 dataset with #n data points
% num: the minimum number of points. Here num=4.
% iter: the number of iterations
% distThresh: the threshold of the distances between points and the fitting line
% inlierRatio: the threshold of the number of inliers
% bpI : Initialized affine transform model
number = size(data,1); % Total number of points
bestInNum = 0; % Best fitting line with largest number of inliers
% Initial parameters for best model (affine transform)
% Affine transform : T = [bp1, bp2, bp3, bp4; bp5, bp6, bp7, bp8; bp9, bp10, bp11, bp12;]
bp1 = bpI(1,1); bp2 = bpI(1,2); bp3 = bpI(1,3); bp4 = bpI(1,4);
bp5 = bpI(1,5); bp6 = bpI(1,6); bp7 = bpI(1,7); bp8 = bpI(1,8);
bp9 = bpI(1,9); bp10 = bpI(1,10); bp11 = bpI(1,11); bp12 = bpI(1,12);
for i=1:iter
% Randomly select 4 points
idx = randperm(number,num); sample = data(idx,:);
% Creating others which is the data that does not contain data in sample
idxs = sort(idx, 'descend'); % Sorting idx
others = data;
for n = 1:num
others(idxs(1,n), :) = [];
end
x1 = sample(1,1); y1 = sample(1,2); z1 = sample(1,3);
x2 = sample(2,1); y2 = sample(2,2); z2 = sample(2,3);
x3 = sample(3,1); y3 = sample(3,2); z3 = sample(3,3);
x4 = sample(4,1); y4 = sample(4,2); z4 = sample(4,3);
X1 = sample(1,4); Y1 = sample(1,5); Z1 = sample(1,6);
X2 = sample(2,4); Y2 = sample(2,5); Z2 = sample(2,6);
X3 = sample(3,4); Y3 = sample(3,5); Z3 = sample(3,6);
X4 = sample(4,4); Y4 = sample(4,5); Z4 = sample(4,6);
B = [X1; Y1; Z1; X2; Y2; Z2; X3; Y3; Z3; X4; Y4; Z4];
A = [
x1, y1, z1, 1, 0 , 0 , 0, 0, 0, 0, 0, 0;
0 , 0 , 0, 0, x1, y1, z1, 1, 0, 0 ,0, 0;
0 , 0 , 0, 0, 0 , 0 , 0, 0, x1, y1, z1, 1;
x2, y2, z1, 1, 0 , 0 , 0, 0, 0, 0, 0, 0;
0 , 0 , 0, 0, x2, y2, z2, 1, 0 , 0 ,0, 0;
0 , 0 , 0, 0, 0 , 0 , 0, 0, x2, y2, z2, 1;
x3, y3, z3, 1, 0 , 0 , 0, 0, 0, 0, 0, 0;
0 , 0 , 0, 0, x3, y3, z3, 1, 0 , 0 ,0, 0;
0 , 0 , 0, 0, 0 , 0 , 0, 0, x3, y3, z3, 1;
x4, y4, z4, 1, 0 , 0 , 0, 0, 0, 0, 0, 0;
0 , 0 , 0, 0, x4, y4, z4, 1, 0 , 0 ,0, 0;
0 , 0 , 0, 0, 0 , 0 , 0, 0, x4, y4, z4, 1
];
cbp = A\B; % calculating best parameters of the model (affine transform)
T = [reshape(cbp',[4,3])'; 0, 0, 0, 1]; % Current affine transform matrix
% Computing other points in the dataset that their distance from the
% calculated model is less than the threshold.
numOthers = size(others,1);
inliers = [];
for j = 1:numOthers
% b = T a
d = others(j,:); % Explanation: d = [ax, ay, az, bx, by, bz]
a = [d(1,1:3), 1]'; % Explanation a = [ax, ay, az]'
b = [d(1,4:6),1]'; % b = [bx, by, bz]'
cb = T*a; % Calculated b
dist = sum((cb-b).^2);
if(dist<=distThresh)
inliers = [inliers; d];
end
end
numinliers = size(inliers,1);
% Update the number of inliers and fitting model if better model is found
if (numinliers >= bestInNum)
% Better model is estimated
bestInNum = numinliers;
bp1 = cbp(1,1); bp2 = cbp(2,1); bp3 = cbp(3,1); bp4 = cbp(4,1);
bp5 = cbp(5,1); bp6 = cbp(6,1); bp7 = cbp(7,1); bp8 = cbp(8,1);
bp9 = cbp(9,1); bp10 = cbp(10,1); bp11 = cbp(11,1); bp12 = cbp(12,1);
bp = [bp1, bp2, bp3, bp4, bp5, bp6, bp7, bp8, bp9, bp10, bp11, bp12];
end
end
bp
end
Related
Working on a little project to do with computer graphics. So far I have (I think) everything in order as the code below patches my world to the screen fine.
However, I have a final hurdle to jump: I would like the code to patch for different values of theta. In the code, it is set at 2*pi/4 but I would like to iterate and patch for every angle between 0:pi/4:2*pi. However, when I try to put the code in a for or while loop it doesn't seem to do what I expect, that is, to patch with one angle, then patch with another etc.
Really stuck I have tried a lot of stuff and now I'm just without any ideas. Would really appreciate any help or suggestions.
function world()
% Defining House Vertices
house_verts = [-5, 0, -5;
5, 0, -5;
5, 10, -5;
0,15,-5;
-5,10,-5;
-5,0,5;
5,0,5;
5,10,5;
0,15,5;
-5,10,5];
% Sorting out the homeogenous co-ordinates
ones = [1,1,1,1,1,1,1,1,1,1];
ones=transpose(ones);
house_verts = [house_verts, ones];
house_verts = transpose(house_verts);
% House faces
house_faces = [1,2,3,4,5;
2,7,8,3,3;
6,7,8,9,10;
1,6,10,5,5;
3,4,9,8,8;
4,5,10,9,9;
1,2,7,6,6];
world_pos = [];
% creating a street
street_vector = [1,0,1]; % the direction of the street
orthog_street_vector = [-1,0,1];
for i = 1:15
% current_pos1 and 2 will be the positions of the two houses
% opposite each other on the street
current_pos1 = 30*i*street_vector + 50*orthog_street_vector;
current_pos2 = 30*i*street_vector - 50*orthog_street_vector;
world_pos = [world_pos;current_pos1;current_pos2];
end
% initialising world vertices and faces
world_verts = [];
world_faces = [];
% Populating the street
for i =1:size(world_pos,1)
T = transmatrix(world_pos(i,:)); % a translation matrix
s = [1,1/2 + rand(),1];
S=scalmatrix(s); % a matrix for a random scaling of the height (y-coordinate)
Ry = rotymatrix(rand()*2*pi); % a matrix for a random rotation about the y-axis
A = T*Ry*S; % the compound transformation matrix to take the house into the world
obj_faces = size(world_verts,2) + house_faces; %increments the basic house faces to match the current object
obj_verts = A*house_verts;
world_verts = [world_verts, obj_verts]; % adds the vertices to the world
world_faces = [world_faces; obj_faces]; % adds the faces to the world
end
% initialising aligned vertices
align_verts = [];
% Aligning the vertices to the particular camera at angle theta
for elm = world_verts
x = 350 + 350*cos(2*pi/4);
z = 350 + 350*sin(2*pi/4);
y = 80;
u = [x,y,z];
v = [250,0,250];
d = v - u;
phiy = atan2(d(1),d(3));
phix = -atan2(d(2),sqrt(d(1)^2+d(3)^2));
T = transmatrix([-u(1),-u(2),-u(3)]);
Ry = rotymatrix(phiy);
Rx = rotxmatrix(phix);
A = Rx*Ry*T;
align_verts = [align_verts, A*elm];
end
% initialising projected vertices
proj_verts=[];
% Performing the projection
for elm = align_verts
proj = projmatrix(10);
projverts = proj*elm;
projverts = ((10/projverts(3))*projverts);
proj_verts = [proj_verts,projverts];
end
% Displaying the world
for i = 1:size(world_faces,1)
for j = 1:size(world_faces,2)
x(j) =proj_verts(1,world_faces(i,j));
z(j) = proj_verts(2,world_faces(i,j));
end
patch(x,z,'w')
end
end
function T = transmatrix(p)
T = [1 0 0 p(1) ; 0 1 0 p(2) ; 0 0 1 p(3) ; 0 0 0 1];
end
function S = scalmatrix(s)
S = [s(1) 0 0 0 ; 0 s(2) 0 0 ; 0 0 s(3) 0 ; 0 0 0 1];
end
function Ry = rotymatrix(theta)
Ry = [cos(theta), 0, -sin(theta),0;
0,1,0,0;
sin(theta),0,cos(theta),0;
0,0,0,1];
end
function Rx = rotxmatrix(phi)
Rx = [1, 0, 0, 0;
0, cos(phi), -sin(phi), 0;
0, sin(phi), cos(phi), 0;
0, 0, 0, 1];
end
function P = projmatrix(f)
P = [1,0,0,0
0,1,0,0
0,0,1,0
0,0,1/f,0];
end
Updated code: managed to get the loop to work but now there is some bug i don't understand when it does a full rotation again any help would be great.
function world()
% Defining House Vertices
house_verts = [-5, 0, -5;
5, 0, -5;
5, 10, -5;
0,15,-5;
-5,10,-5;
-5,0,5;
5,0,5;
5,10,5;
0,15,5;
-5,10,5];
% Sorting out the homeogenous co-ordinates
ones = [1,1,1,1,1,1,1,1,1,1];
ones=transpose(ones);
house_verts = [house_verts, ones];
house_verts = transpose(house_verts);
% House faces
house_faces = [1,2,3,4,5;
2,7,8,3,3;
6,7,8,9,10;
1,6,10,5,5;
3,4,9,8,8;
4,5,10,9,9;
1,2,7,6,6];
world_pos = [];
% creating a street
street_vector = [1,0,1]; % the direction of the street
orthog_street_vector = [-1,0,1];
for i = 1:15
% current_pos1 and 2 will be the positions of the two houses
% opposite each other on the street
current_pos1 = 30*i*street_vector + 50*orthog_street_vector;
current_pos2 = 30*i*street_vector - 50*orthog_street_vector;
world_pos = [world_pos;current_pos1;current_pos2];
end
% initialising world vertices and faces
world_verts = [];
world_faces = [];
% Populating the street
for i =1:size(world_pos,1)
T = transmatrix(world_pos(i,:)); % a translation matrix
s = [1,1/2 + rand(),1];
S=scalmatrix(s); % a matrix for a random scaling of the height (y-coordinate)
Ry = rotymatrix(rand()*2*pi); % a matrix for a random rotation about the y-axis
A = T*Ry*S; % the compound transformation matrix to take the house into the world
obj_faces = size(world_verts,2) + house_faces; %increments the basic house faces to match the current object
obj_verts = A*house_verts;
world_verts = [world_verts, obj_verts]; % adds the vertices to the world
world_faces = [world_faces; obj_faces]; % adds the faces to the world
end
% initialising aligned vertices
align_verts = [];
% initialising projected vertices
proj_verts=[];
% Aligning the vertices to the particular camera at angle theta
theta = 0;
t = 0;
while t < 100
proj_verts=[];
align_verts = [];
for elm = world_verts
x = 300 + 300*cos(theta);
z = 300 + 300*sin(theta);
y = 80;
u = [x,y,z];
v = [200,0,200];
d = v - u;
phiy = atan2(d(1),d(3));
phix = -atan2(d(2),sqrt(d(1)^2+d(3)^2));
T = transmatrix([-u(1),-u(2),-u(3)]);
Ry = rotymatrix(phiy);
Rx = rotxmatrix(phix);
A = Rx*Ry*T;
align_verts = [align_verts, A*elm];
end
% Performing the projection
for elm = align_verts
proj = projmatrix(6);
projverts = proj*elm;
projverts = ((6/projverts(3))*projverts);
proj_verts = [proj_verts,projverts];
end
% Displaying the world
for i = 1:size(world_faces,1)
for j = 1:size(world_faces,2)
x(j) = proj_verts(1,world_faces(i,j));
z(j) = proj_verts(2,world_faces(i,j));
end
patch(x,z,'w')
pbaspect([1,1,1]); % adjusts the aspect ratio of the figure
end
title('Projected Space', 'fontsize', 16, 'interpreter', 'latex')
xlabel('$x$', 'fontsize', 16, 'interpreter', 'latex')
ylabel('$z$', 'fontsize', 16, 'interpreter', 'latex')
zlabel('$y$', 'fontsize', 16, 'interpreter', 'latex')
axis([-5,5,-5,2,0,5]) % sets the axes limits
view(0,89)
pause(0.0000001)
theta = theta + 0.01;
clf
end
end
function T = transmatrix(p)
T = [1 0 0 p(1) ; 0 1 0 p(2) ; 0 0 1 p(3) ; 0 0 0 1];
end
function S = scalmatrix(s)
S = [s(1) 0 0 0 ; 0 s(2) 0 0 ; 0 0 s(3) 0 ; 0 0 0 1];
end
function Ry = rotymatrix(theta)
Ry = [cos(theta), 0, -sin(theta),0;
0,1,0,0;
sin(theta),0,cos(theta),0;
0,0,0,1];
end
function Rx = rotxmatrix(phi)
Rx = [1, 0, 0, 0;
0, cos(phi), -sin(phi), 0;
0, sin(phi), cos(phi), 0;
0, 0, 0, 1];
end
function P = projmatrix(f)
P = [1,0,0,0
0,1,0,0
0,0,1,0
0,0,1/f,0];
end
This question already has answers here:
Create a zero-filled 2D array with ones at positions indexed by a vector
(4 answers)
Closed 5 years ago.
Often you are given a vector of integer values representing your labels (aka classes), for example
[2; 1; 3; 3; 2]
and you would like to hot one encode this vector, such that each value is represented by a 1 in the column indicated by the value in each row of the labels vector, for example
[0 1 0;
1 0 0;
0 0 1;
0 0 1;
0 1 0]
For speed and memory savings, you can use bsxfun combined with eq to accomplish the same thing. While your eye solution may work, your memory usage grows quadratically with the number of unique values in X.
Y = bsxfun(#eq, X(:), 1:max(X));
Or as an anonymous function if you prefer:
hotone = #(X)bsxfun(#eq, X(:), 1:max(X));
Or if you're on Octave (or MATLAB version R2016b and later) , you can take advantage of automatic broadcasting and simply do the following as suggested by #Tasos.
Y = X == 1:max(X);
Benchmark
Here is a quick benchmark showing the performance of the various answers with varying number of elements on X and varying number of unique values in X.
function benchit()
nUnique = round(linspace(10, 1000, 10));
nElements = round(linspace(10, 1000, 12));
times1 = zeros(numel(nUnique), numel(nElements));
times2 = zeros(numel(nUnique), numel(nElements));
times3 = zeros(numel(nUnique), numel(nElements));
times4 = zeros(numel(nUnique), numel(nElements));
times5 = zeros(numel(nUnique), numel(nElements));
for m = 1:numel(nUnique)
for n = 1:numel(nElements)
X = randi(nUnique(m), nElements(n), 1);
times1(m,n) = timeit(#()bsxfunApproach(X));
X = randi(nUnique(m), nElements(n), 1);
times2(m,n) = timeit(#()eyeApproach(X));
X = randi(nUnique(m), nElements(n), 1);
times3(m,n) = timeit(#()sub2indApproach(X));
X = randi(nUnique(m), nElements(n), 1);
times4(m,n) = timeit(#()sparseApproach(X));
X = randi(nUnique(m), nElements(n), 1);
times5(m,n) = timeit(#()sparseFullApproach(X));
end
end
colors = get(0, 'defaultaxescolororder');
figure;
surf(nElements, nUnique, times1 * 1000, 'FaceColor', colors(1,:), 'FaceAlpha', 0.5);
hold on
surf(nElements, nUnique, times2 * 1000, 'FaceColor', colors(2,:), 'FaceAlpha', 0.5);
surf(nElements, nUnique, times3 * 1000, 'FaceColor', colors(3,:), 'FaceAlpha', 0.5);
surf(nElements, nUnique, times4 * 1000, 'FaceColor', colors(4,:), 'FaceAlpha', 0.5);
surf(nElements, nUnique, times5 * 1000, 'FaceColor', colors(5,:), 'FaceAlpha', 0.5);
view([46.1000 34.8000])
grid on
xlabel('Elements')
ylabel('Unique Values')
zlabel('Execution Time (ms)')
legend({'bsxfun', 'eye', 'sub2ind', 'sparse', 'full(sparse)'}, 'Location', 'Northwest')
end
function Y = bsxfunApproach(X)
Y = bsxfun(#eq, X(:), 1:max(X));
end
function Y = eyeApproach(X)
tmp = eye(max(X));
Y = tmp(X, :);
end
function Y = sub2indApproach(X)
LinearIndices = sub2ind([length(X),max(X)], [1:length(X)]', X);
Y = zeros(length(X), max(X));
Y(LinearIndices) = 1;
end
function Y = sparseApproach(X)
Y = sparse(1:numel(X), X,1);
end
function Y = sparseFullApproach(X)
Y = full(sparse(1:numel(X), X,1));
end
Results
If you need a non-sparse output bsxfun performs the best, but if you can use a sparse matrix (without conversion to a full matrix), then that is the fastest and most memory efficient option.
You can use the identity matrix and index into it using the input/labels vector, for example if the labels vector X is some random integer vector
X = randi(3,5,1)
ans =
2
1
2
3
3
then, the following will hot one encode X
eye(max(X))(X,:)
which can be conveniently defined as a function using
hotone = #(v) eye(max(v))(v,:)
EDIT:
Although the solution above works in Octave, you have you modify it for Matlab as follows
I = eye(max(X));
I(X,:)
I think this is fast specially when matrix dimension grows:
Y = sparse(1:numel(X), X,1);
or
Y = full(sparse(1:numel(X), X,1));
Just posting the sub2ind solution too to satisfy your curiosity :)
But I like your solution better :p
>> X = [2,1,2,3,3]'
>> LinearIndices = sub2ind([length(X),3], [1:length(X)]', X);
>> tmp = zeros(length(X), 3);
>> tmp(LinearIndices) = 1
tmp =
0 1 0
1 0 0
0 1 0
0 0 1
0 0 1
Just in case someone is looking for the 2D case (as I was):
X = [2 1; ...
3 3; ...
2 4]
Y = zeros(3,2,4)
for i = 1:4
Y(:,:,i) = ind2sub(X,X==i)
end
gives a one-hot encoded matrix along the 3rd dimension.
I'm currently trying to implement the HS-method for optical flow but my u and v always seem to have only zeros in them. I can't seem to figure out my error in here:
vid=VideoReader('outback.AVI');
vid.CurrentTime = 1.5;
alpha=1;
iterations=10;
frame_one = readFrame(vid);
vid.CurrentTime = 1.6;
frame_two = readFrame(vid);
% convert to grayscale
fone_gr = rgb2gray(frame_one);
ftwo_gr = rgb2gray(frame_two);
% construct for each image
sobelx=[-1 -2 -1; 0 0 0; 1 2 1];
sobely=sobelx';
time=[-1 1];
fx_fone=imfilter(fone_gr, sobelx);
fy_fone=imfilter(fone_gr, sobely);
ft_fone=imfilter(fone_gr, time);
fx_ftwo=imfilter(ftwo_gr, sobelx);
fy_ftwo=imfilter(ftwo_gr, sobely);
ft_ftwo=imfilter(ftwo_gr, time);
Ix=double(fx_fone+fx_ftwo);
Iy=double(fy_fone+fy_ftwo);
It=double(ft_fone+ft_ftwo);
% flow-variables (velocity = 0 assumption)
velocity_kernel=[0 1 0; 1 0 1; 0 1 0];
u = double(0);
v = double(0);
% iteratively solve for u and v
for i=1:iterations
neighborhood_average_u=conv2(u, velocity_kernel, 'same');
neighborhood_average_v=conv2(v, velocity_kernel, 'same');
data_term = (Ix .* neighborhood_average_u + Iy .* neighborhood_average_v + It);
smoothness_term = alpha^2 + (Ix).^2 + (Iy).^2;
numerator_u = Ix .* data_term;
numerator_v = Iy .* data_term;
u = neighborhood_average_u - ( numerator_u ./ smoothness_term );
v = neighborhood_average_v - ( numerator_v ./ smoothness_term );
end
u(isnan(u))=0;
v(isnan(v))=0;
figure
imshow(frame_one); hold on;
quiver(u, v, 5, 'color', 'b', 'linewidth', 2);
set(gca, 'YDir', 'reverse');
The only thing I'm not really confident about is the computation of the neighborhood average:
velocity_kernel=[0 1 0; 1 0 1; 0 1 0];
u = double(0);
v = double(0);
[..]
neighborhood_average_u=conv2(u, velocity_kernel, 'same');
neighborhood_average_v=conv2(v, velocity_kernel, 'same');
Wouldn't that always result in a convolution matrix with only zeros?
I thought about changing it to the following, since I need to compute the average velocity using the velocity kernel on each pixel of my images:
velocity_kernel=[0 1 0; 1 0 1; 0 1 0];
u = double(0);
v = double(0);
[..]
neighborhood_average_u=conv2(Ix, velocity_kernel, 'same');
neighborhood_average_v=conv2(Iy, velocity_kernel, 'same');
But I still don't know if that would be the correct way. I followed the instructions on the bottom of this MATLAB page:
http://de.mathworks.com/help/vision/ref/opticalflowhs-class.html
I found this paper with some further explanations and also some matlab code.
They compute the average of u and v as follows:
% initial values
u = 0; v = 0;
% weighted average kernel
kernel = [1/12 1/6 1/12; 1/6 0 1/6; 1/12 1/6 1/12];
for i = 1:iterations
uAvg = conv2( u, kernel 'same' );
vAvg = conv2( v, kernel 'same' );
...
end
Forum
I've got a set of data that apparently forms an ellipse in 3D space (not an ellipsoid, but a curve in 3D).
Being inspired by following thread http://au.mathworks.com/matlabcentral/newsreader/view_thread/65773
and with the help from someone ,I manage to get the optimization code running and outputs a set of best parameters x (vector). However, when I try to use this x to replicate the ellipse,the outcomes is a strange straight line in the space. I have been stacked on this for days., still don't know what went wrong....pretty much devastated... I hope someone can shed some light on this. The Mathematica formulations for the ellipse follows the same as in the above thread ,where
The 3D-ellipse is given by: (x;y;z) = (z1;z2;z3) + R(alpha,beta,gamma).(acos(phi); b*sin(phi);0)
where:
* z is the translation vector.
* R is the rotation matrix (using Euler angles, we first rotate alpha rad around the x-axis, then beta rad around the y-axis and finally gamma rad around the z-axis again).
* a is the long axis of the ellipse
* b is the short axis of the ellipse.
Here is my target function for optimization (ellipsefit.m)
function [merit]= ellipsefit(x, vmatrix) % x is the initial parameters, vmatrix stores the datapoints
load vmatrix.txt % In vmatrix, the data are stored: N rows x 3 columns
a = x(1);
b = x(2);c
alpha = x(3);
beta = x(4);
gamma = x(5);
z = [x(6),x(7),x(8)];
t = z'
[dim1, dim2]=size(vmatrix);
% construction of rotation matrix R(alpha,beta,gamma)
R1 = [cos(alpha), sin(alpha), 0; -sin(alpha), cos(alpha), 0; 0, 0, 1];v
R2 = [1, 0, 0; 0, cos(beta), sin(beta); 0, -sin(beta), cos(beta)];
R3 = [cos(gamma), sin(gamma), 0; -sin(gamma), cos(gamma), 0; 0, 0, 1];
R = R3*R2*R1;
% first compute vector phi (in the length of the data) by minimizing for every
% point in the data set the distance of this point to the ellipse
% (with its initial parameters a,b,alpha,beta,gamma, z1,z2,z3 held fixed) with respect to phi.
for i=1:dim1
point=vmatrix(i,:)';
dist=#(phi)sum((R*[a*cos(phi); b*sin(phi); 0]+t-point)).^2;
phi(i)=fminbnd(dist,0,2*pi);
end
v = [a*cos(phi); b*sin(phi); zeros(size(phi))];
P = R*v;
%The targetfunction is: g = (xi1,xi2,xi3)' -(z1,z2,z3)'-R(alpha,beta,gamma)(a cos(phi), b sin(phi),0)'
% Construction of distance function
merit = [vmatrix(:,1)-z(1)-P(1),vmatrix(:,2)-z(2)-P(2),vmatrix(:,3)-z(3)-P(3)];
merit = sqrt(sum(sum(merit.^2)))
end
here is the main function for parameters initialization and call for opts (xfit.m)
function [y] = xfit (x)
x= [1 1 1 1 1 1 1 1] % initial parameters
[x] = fminsearch(#ellipsefit,x) % set the distance minimum as the target function
y=x
end
code to reconstruct the ellipse in scatter points (ellipsescatter.txt)
x= [0.655,0.876,1.449,2.248,1.024,0.201,-0.11,0.002] % values obtained according to above routines
a = x(1);
b = x(2);
alpha = x(3);
beta = x(4);
gamma = x(5);
z = [x(6),x(7),x(8)];
R1 = [cos(alpha), sin(alpha), 0; -sin(alpha), cos(alpha), 0; 0, 0, 1];
R2 = [1, 0, 0; 0, cos(beta), sin(beta); 0, -sin(beta), cos(beta)];
R3 = [cos(gamma), sin(gamma), 0; -sin(gamma), cos(gamma), 0; 0, 0, 1];
R = R3*R2*R1;
phi=linspace(0,2*pi,100)
v = [a*cos(phi); b*sin(phi); zeros(size(phi))];
P = R*v;
u = P'
and last the data points (vmatrix)
0.002037965 0.004225765 0.002020202
0.005766671 0.007269193 0.004040404
0.010004802 0.00995638 0.006060606
0.014444336 0.012502725 0.008080808
0.019083408 0.014909533 0.01010101
0.023967745 0.017144827 0.012121212
0.03019849 0.01969697 0.014591289
0.038857283 0.022727273 0.017839321
0.045443501 0.024730475 0.02020202
0.051213405 0.026346492 0.022222222
0.061038174 0.028787879 0.02555121
0.069408829 0.030575164 0.028282828
0.075785861 0.031818182 0.030321465
0.088818543 0.033954681 0.034343434
0.095538223 0.03490652 0.036363636
0.109421234 0.036499949 0.04040404
0.123800737 0.037746182 0.044444444
0.131206601 0.038218171 0.046464646
0.146438211 0.038868525 0.050505051
0.162243245 0.039117883 0.054545455
0.178662839 0.03893748 0.058585859
0.195740664 0.038296774 0.062626263
0.204545539 0.037790433 0.064646465
0.222781268 0.036340005 0.068686869
0.23715887 0.034848485 0.071748051
0.251787024 0.033009003 0.074747475
0.26196429 0.031542949 0.076767677
0.278510276 0.028787879 0.079919236
0.294365342 0.025757576 0.082799669
0.306221108 0.023197784 0.084848485
0.31843759 0.020305704 0.086868687
0.331291367 0.016967964 0.088888889
0.342989936 0.013636364 0.090622484
0.352806191 0.010606061 0.091993214
0.36201461 0.007575758 0.093211986
0.376385537 0.002386324 0.094949495
0.386214665 -0.001515152 0.096012
0.396173756 -0.005800677 0.096969697
0.406365393 -0.010606061 0.097799682
0.417897899 -0.016666667 0.098516141
0.428059375 -0.022727273 0.098889844
0.436894505 -0.028787879 0.09893196
0.444444123 -0.034848485 0.098652697
0.45074522 -0.040909091 0.098061305
0.455830971 -0.046969697 0.097166076
0.457867157 -0.05 0.096591789
0.46096663 -0.056060606 0.095199991
0.461974832 -0.059090909 0.094368708
0.462821268 -0.063709158 0.092929293
0.46279206 -0.068181818 0.091323015
0.462224312 -0.071212121 0.090097745
0.461247257 -0.074242424 0.088770148
0.459194871 -0.07812596 0.086868687
0.456406121 -0.0818267 0.084848485
0.45309565 -0.085162601 0.082828283
0.449335762 -0.088184223 0.080808081
0.445185841 -0.090933095 0.078787879
0.440695103 -0.093443633 0.076767677
0.435904796 -0.095744683 0.074747475
0.429042582 -0.098484848 0.072052312
0.419877272 -0.101489369 0.068686869
0.41402731 -0.103049401 0.066666667
0.407719192 -0.104545455 0.064554798
0.395265308 -0.106881864 0.060606061
0.388611992 -0.107880111 0.058585859
0.374697979 -0.10945186 0.054545455
0.360058411 -0.11051623 0.050505051
0.352443612 -0.11084211 0.048484848
0.336646801 -0.111097219 0.044444444
0.320085063 -0.110817414 0.04040404
0.31150078 -0.110465333 0.038383838
0.293673303 -0.109300395 0.034343434
0.275417637 -0.107575758 0.030396076
0.265228963 -0.106361993 0.028282828
0.251914589 -0.104545455 0.025603647
0.234385536 -0.101745907 0.022222222
0.223443994 -0.099745394 0.02020202
0.212154519 -0.097501571 0.018181818
0.20046153 -0.09497557 0.016161616
0.188298809 -0.092121085 0.014141414
0.17558878 -0.088883868 0.012121212
0.162241674 -0.085201142 0.01010101
0.148154337 -0.081000773 0.008080808
0.136529019 -0.077272727 0.006507255
0.127611912 -0.074242424 0.005361311
0.116762238 -0.070350086 0.004040404
0.103195122 -0.065151515 0.002507114
0.095734279 -0.062121212 0.001725236
0.081719652 -0.056060606 0.000388246
0 0 0
This answer is not a direct fit in 3D, it instead involves first a rotation of the data so that the plane of the points coincides with the xy plane, then a fit to the data in 2D.
% input: data, a N x 3 array with one set of Cartesian coords per row
% remove the center of mass
CM = mean(data);
datap = data - ones(size(data,1),1)*CM;
% now rotate all points into the xy plane ...
% start by finding the plane:
[u s v]=svd(datap);
% rotate the data into the principal axes frame:
datap = datap*v;
% fit the equation for an ellipse to the rotated points
x= [0.25 0.07 0.037 0 0]'; % initial parameters
options=1;
xopt = fmins(#fellipse,x,options,[],datap) % set the distance minimum as the target function
This is the function fellipse, based on the function provided:
function [merit]= fellipse(x,data) % x is the initial parameters, data stores the datapoints
a = x(1);
b = x(2);
alpha = x(3);
z = x(4:5);
R = [cos(alpha), sin(alpha), 0; -sin(alpha), cos(alpha), 0; 0, 0, 1];
data = data*R;
merit = 0;
[dim1, dim2]=size(data);
for i=1:dim1
dist=#(phi)sum( ( [a*cos(phi);b*sin(phi)] + z - data(i,1:2)').^2 );
phi=fminbnd(dist,0,2*pi);
merit = merit+dist(phi);
end
end
Also, note again that this can be turned into a fit directly in 3D, but this answer is just as good if you can assume the data points lie approx. in a 2D plane. The current solution is likely much more efficient then a solution in 3D with additional parameters.
Hopefully the code is self-explanatory. I recommend looking at the link included in the OP, it explains the purpose of the loop over phi.
And this is how you can inspect the result of the fit:
a = xopt(1);
b = xopt(2);
alpha = xopt(3);
z = [xopt(4:5) ; 0]';
phi = linspace(0,2*pi,100)';
simdat = [a*cos(phi) b*sin(phi) zeros(size(phi))];
R = [cos(alpha), -sin(alpha), 0; sin(alpha), cos(alpha), 0; 0, 0, 1];
simdat = simdat*R + ones(size(simdat,1), 1)*z ;
figure, hold on
plot3(datap(:,1),datap(:,2),datap(:,3),'o')
plot3(simdat(:,1),simdat(:,2),zeros(size(simdat,1),1),'r-')
Edit
The following is a 3D approach. It does not appear to be very robust as it is quite sensitive to the choice of starting parameters. Some improvements may be necessary.
CM = mean(data);
datap = data - ones(size(data,1),1)*CM;
xopt = [ 0.07 0.25 1 -0.408976 0.610120 0 0 0]';
options=1;
xopt = fmins(#fellipse3d,xopt,options,[],datap) % set the distance minimum as the target function
The function fellipse3d is
function [merit]= fellipse3d(x,data) % x is the initial parameters, data stores the datapoints
a = abs(x(1));
b = abs(x(2));
alpha = x(3);
beta = x(4);
gamma = x(5);
z = x(6:8)';
[dim1, dim2]=size(data);
R1 = [cos(alpha), sin(alpha), 0; -sin(alpha), cos(alpha), 0; 0, 0, 1];
R2 = [1, 0, 0; 0, cos(beta), sin(beta); 0, -sin(beta), cos(beta)];
R3 = [cos(gamma), sin(gamma), 0; -sin(gamma), cos(gamma), 0; 0, 0, 1];
R = R3*R2*R1;
data = (data - z(ones(dim1,1),:))*R;
merit = 0;
for i=1:dim1
dist=#(phi)sum( ([a*cos(phi);b*sin(phi);0] - data(i,:)').^2 );
phi=fminbnd(dist,0,2*pi);
merit = merit+dist(phi);
end
end
You can visualize the results with
a = xopt(1);
b = xopt(2);
alpha = -xopt(3);
beta = -xopt(4);
gamma = -xopt(5);
z = xopt(6:8)' + CM;
dim1 = 100;
phi = linspace(0,2*pi,dim1)';
simdat = [a*cos(phi) b*sin(phi) zeros(size(phi))];
R1 = [cos(alpha), sin(alpha), 0; ...
-sin(alpha), cos(alpha), 0; ...
0, 0, 1];
R2 = [1, 0, 0; ...
0, cos(beta), sin(beta); ...
0, -sin(beta), cos(beta)];
R3 = [cos(gamma), sin(gamma), 0; ...
-sin(gamma), cos(gamma), 0; ...
0, 0, 1];
R = R1*R2*R3;
simdat = simdat*R + z(ones(dim1,1),:);
figure, hold on
plot3(data(:,1),data(:,2),data(:,3),'o')
plot3(simdat(:,1),simdat(:,2),simdat(:,3),'r-')
I’m trying to formulate and solve a linear programming problem using the spicy.optimize.linprog function.
I want to solve the function Ax = b subject to the following constraints:
# A b
-0.4866 x1 + 0.1632 x2 < 0
0.3211 x1 + 0.5485 x2 < 0
-0.5670 x1 + 0.1099 x2 < 0
-0.1070 x1 + 0.0545 x2 = 1
-0.4379 x1 + 0.1465 x2 < 0
0.0220 x1 + 0.7960 x2 < 0
-0.3673 x1 - 0.0494 x2 < 0
I have as input an nx2 matrix A and nx1 matrix b. The result should be the vectors x1 and x2. Here's my input data.
# Coefficients
A = [[-0.4866, 0.1632],
[0.3211, 0.5485],
[-0.5670, 0.1099],
[-0.1070, 0.0545],
[-0.4379, 0.1465],
[0.0220, 0.7960],
[-0.3673, -0.0494]]
# Inequalities
b = [0, 0, 0, -1, 0, 0, 0]
I think my problem is how to formulate c, the function the be minimized for input into the linprog function.
res = linprog(c, A, b)
I'm able to solve for the upper bounds by:
c = [1, 0, 0]
A = [[-1, -0.486, 0.1632],
[-1, 0.3211, 0.5485],
[-1, -0.5670, 0.1099],
[-1, -0.1070, 0.0545],
[-1, -0.4379, 0.1465],
[-1, 0.220, 0.7960],
[-1,-0.3673, -0.0494]]
b = [0, 0, 0, -1, 0, 0, 0]
c0_bounds = (0, 1)
x1_bounds = (-np.inf, np.inf)
x2_bounds = (-np.inf, np.inf)
res = linprog(c, A_ub=A, b_ub=b, bounds=(c0_bounds, x1_bounds, x2_bounds), options={"disp": True})
But now what if I also want to solve for the lower bounds?