NFC type B PUPI doubts - tags

I have the Panasonic MN63Y1210 tag. I have read it with different phones and always I see that the ID is 0x00000000
I've made a program with Arduino and Adafruit's PN532 shield and I have that response too, in ATQB, the PUPI appears like 0x00000000, but when I read the ISO 14443-3 I read this:
A Pseudo-Unique Identifier (PUPI) is used to differenciate PICCs
during anticollision. This 4-byte number may be either a number
dinamically generated by the PICC or a diversified fixed number. The
PUPI shall only be generated by a state transition form the POWER-OFF
to the IDLE state.
For the transition from POWER OFF to IDLE, we need a field, so, I expect that when I try to read the tag this is not in POWER OFF, because I'm applying a field, but I think it is strange to have that PUPI of 0x00000000. I've tested with another tag (same Panasonic model) and I get the same PUPI...
Is this normal? Or what do you think about it?

I would suggest that you start by looking into the datasheet of the MN63Y1210:
On page 26 (table 3-13) you will find that the default value this chip uses for the PUPI is 00000000. You can configure that value, for instance, over the serial interface.

Related

How to read Analog Output Holding Registers on Advantech ADAM 6717 through ModBus TCP

I've been exploring the ADAM 6717 from Advantech.
This is the ModBus address table for said device:
At first I wanted to modify the value of the Digital output channel 0(DO0), so, as can be seen from the picture above, such address is the 0x0017.
I succeed at this by using a ModBus tool and the following settings:
Sending either "On" or "Off", turns On and off a LED connected to that output. Everything runs smoothly according to my expectation up to this point.
The problem arises when I want to read the Analog Input channel 6 or equivalently, address 400431~40044.
Since that address lies on the Analog Output Holding Registers part of the address table, I though that the following settings would accomplish the job:
However, as can be seen above, the reading shows 0.0 when there is actually 6V connected to that input (a potentiometer)
It is worth mentioning that I've made sure to enable the AI6 channel as well as setting it to Voltage mode instead of current. Also, the web utility for the device shows the AI6 reading correctly as I change the potentiometer's resistance value.
So the problem doesn't lie in the connection from the potentiometer to the AI6 but somewhere else.
Out of nothing and leaving aside what I think I know on this topic, I though of changing the function from 0x03 to 0x04
However, the response is exactly the same.
It bugs me that I can read and write values to the output coils but not the Analog output holding registers.
Is there any configuration that I might be missing over here?
Thanks in advance.
Device settings:
IP address: 10.0.0.1
Port in which the ModBus service is running: 5020

In Application Programming issue

I'm working on project on STM32L152RCT6, where i have to build a mechanism to self update the code from the newly gated file(HEX file).
For that i have implemented such mechanism like boot loader where it checks for the new firmware if there it it has to cross verify and if found valid it has to store on "Application location".
I'm taking following steps.
Boot loader address = 0x08000000
Application address = 0x08008000
Somewhere on specified location it has to check for new file through Boot loader program.
If found valid it has to be copy all the HEX on location(as per the guide).
Than running the application code through jump on that location.
Now problem comes from step 5, all the above steps I've done even storing of data has been done properly(verify in STM32 utility), but when i'm jump to the application code it won't work.
Is there i have to cross check or something i'm missing?
Unlike other ARM controllers that directly jump to address 0 at reset, the Cortex-M series takes the start address from a vector table. If the program is loaded directly (without a bootloader), the vector table is at the start of the binary (loaded or mapped to address 0). First entry at offset 0 is the initial value of the stack pointer, second entry at address 4 is called the reset vector, it contains the address of the first instruction to be executed.
Programs loaded with a bootloader usually preserve this arrangement, and put the vector table at the start of the binary, 0x08008000 in your case. Then the reset vector would be at 0x08008004. But it's your application, you should check where did you put your vector table. Hint: look at the .map file generated by the linker to be sure. If it's indeed at 0x08008000, then you can transfer control to the application reset vector so:
void (*app)(void); // declare a pointer to a function
app = *(void (**)(void))0x08008004; // see below
app(); // invoke the function through the pointer
The complicated cast in the second line converts the physical address to a pointer to a pointer to a function, takes the value pointed to it, which is now a pointer to a function, and assigns it to app.
Then you should manage the switchover to the application vector table. You can do it either in the bootloader or in the application, or divide the steps between them.
Disable all interrupts and stop SysTick. Note that SysTick is not an interrupt, don't call NVIC_DisableIRQ() on it. I'd do this step in the bootloader, so it gets responsible to disable whatever it has enabled.
Assign the new vector table address to SCB->VTOR. Beware that the boilerplate SystemInit() function in system_stm32l1xx.c unconditionally changes SCB->VTOR back to the start of the flash, i.e. to 0x08000000, you should edit it to use the proper offset.
You can load the stack pointer value from the vector table too, but it's tricky to do it properly, and not really necessary, the application can just continue to use the stack that was set up in the bootloader. Just check it to make sure it's reasonable.
Have you changed the application according to the new falsh position?
For example the Vector Table has to be set correctl via
SCB->VTOR = ...
When your bootloader starts the app it has to configure everything back to the reset state as the application may relay on the default reset values. Espessially you need to:
Return values of all hardware registers to its reset values
Switch off all peripheral clocks (do not forget about the SysTick)
Disable all enabled interrupts
Return all clock domains to its reset values.
Set the vector table address
Load the stack pointer from the beginning of the APP vector table.
Call the APP entry point.(vertor table start + 4)
Your app has to be compiled and linked using the custom linker script where the FLASH start point is 0x8008000
for example:
FLASH (rx) : ORIGIN = 0x8000000 + 32K, LENGTH = 512K - 32K
SCB->VTOR = FLASH_BASE | VECT_TAB_OFFSET;
where FLASH_BASE's value must be equal to the address of your IROM's value in KEIL
example:
#define FLASH_BASE 0x08004000
Keil configuration

How to get Device Instance Path from Windows kernel driver?

Take a look at this example: a USB device in Windows 7 is reported to have Device instance path(DevinstPath) USB\VID_1EAB&PID_0501\7&25C389C1&0&1 and I know exactly that it corresponds to the so-called hardware-key(hwkey) in registry.
Now my question is: When my KMDF driver code has WDFDEVICE handle for that USB device, how can I know its DevinstPath?
I know I can
send a BusQueryDeviceID to achieve the so-called device-id USB\VID_1EAB&PID_0501;
send a BusQueryInstanceID to achieve the so-called instance-id 1 .
But I don't know how to get the so-called "instance-path". Could some kernel guru kindly tell me how I can get that?
MSDN doc seems really vague on this!
BTW: I also realize that user-layer function SetupDiGetDeviceInstanceId actually returns the DevinstPath -- although it is named "InstanceId".
Device instance path can be queried using DEVPKEY_Device_InstanceId, using either WdfDeviceAllocAndQueryPropertyEx or IoGetDevicePropertyData (passing the WDM physical device object)
Device Instance id is autoincrement sequence.
You can find HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Enum in registry;
Rules:NextPareneID.XXXXXXXX.N
XXXXXX use UUID Calculation crc32 values(test ok)
N is 1~9
Device Instance id format is N&PareneID&random's number&index
enter image description here

JTAG: How do I know the width of the Instruction Register?

Assumed I have a JTAG-chain with several devices from different manufactures:
How does my software, which shall communicate with a specific system within that chain, known the length of the IR for all the others devices within the chain? I do have to know them to send a certain instruction to my device, right?
It is possible to detect the total length of all IR registers in your JTAG daisy-chain. It is also possible to detect the number of devices (or TAPs) in your chain. But you can't detect the individual IR length of a single TAP.
What you can do: You can read out the JTAG ID code register of all of you TAPs. The ID code register (in DR path) is always 32 bit and gets selected by test-logic-reset.
With the ID code you can identify the existing TAPs and look up in the datasheet the length of the individual IR registers.
And yes: In general you do have to know the individual IR length of all the TAPs in your chain to communicate with one of them.
try here: http://www.fpga4fun.com/JTAG3.html
When IR = '1...1', the BYPASS is selected.
The idea is to send a lot of '1' so regardless of IR length all devices will select BYPASS.

Midi Message need help

How do I interpret dwParam1 from the midiInProc delegate into midi status message like note-off, or note-on, control change?
Because as long i try dwParam1 is 254, and is not equal to note-off or anything else.
You won't necessarily receive note-offs from every input device. IIRC it is legal for a device to send a note-on with volume=0 as a substitute for note-off. Also a drum stream (from a drum machine and/or on MIDI channel 10) I believe commonly contains only note-ons, no note-offs.
Given that your question mentions dwParam1 and midiInProc, I'm assuming this is for Windows. When you receive MIM_DATA in your midiInProc, you can parse dwParam1 as follows:
For the status byte (command and channel), use LOBYTE(dwParam1).
For the first data byte, use HIBYTE(dwParam1).
If applicable, for the second data byte, use LOBYTE(HIWORD(dwParam1)).
I'm not entirely sure what you are asking, but I think you are trying to figure out how to interpret MIDI data.
I suggest this resource:
http://www.midi.org/techspecs/midimessages.php
MIDI messages related to notes are differentiated by the first 4 bits, not by the whole byte. The last four bits of the first byte specify the channel.
The answer by #Conrad Albrecht is mostly right, but I wanted to chip in with an answer (instead of a comment), as I think that the original poster is probably being confused by MIDI running status.
If you are seeing bytes which don't resemble normal MIDI status bytes, you can assume that they are of the same type as the previous byte which you received. Therefore it is not only legal, but very common, to use MIDI note on events with velocity of 0 as a substitute for MIDI note offs.
You should just interpret these bytes as the normal second two bytes of a MIDI note on event.