Swift wrapper class - swift

I was watching a talk on swift optimization earlier and they were using an example of a struct with 5 variables 3 strings an array and a dictionary. They said to lower your reference count you could use a wrapper class. Can someone just make a dummy one to I might be able to understand it better.

A wrapper class would be used if you have performance issues with a struct which has many properties which are reference types.
A generic wrapper class:
class Wrapper<T> {
var value: T // or "let" instead of "var"
init(_ value: T) { self.value = value }
}
This is because if you assign it to another variable all pointers of the properties get copied and therefore all reference counts (see ARC) get incremented (and decremented at the end).
This problem mainly occurs when you are looping over large arrays of such structs where at each iteration a new variable gets created.
With a wrapper class only its reference count gets incremented and decremented once.
Example:
struct Big {
// "n" properties which have reference semantics
...
...
}
// "m" count
let hugeArray = [Big(), Big(), Big(), ...]
// m * n reference count operations (+1, -1)
for element in hugeArray {
// do something
}
// if huge array is of type [Wrapper<Big>]
// m * 1 reference count operations (+1, -1)
for element in hugeArray {
// do something
}
Side note: Such a class could improve performance. Use it with care if you write to it, assign it or pass it as parameter since it "changes" the semantics of your wrapped type and is no value type.

Related

What did Swift do to avoid that Collection was mutated while being enumerated? [duplicate]

I'm experimenting with iteration on an array using a for .. in .. loop. My question is related to the case where the collection is changed within the loop body.
It seems that the iteration is safe, even if the list shrinks in the meantime. The for iteration variables successively take the values of the (indexes and) elements that were in the array at the start of the loop, despite the changes made on the flow. Example:
var slist = [ "AA", "BC", "DE", "FG" ]
for (i, st) in slist.enumerated() { // for st in slist gives a similar result
print ("Index \(i): \(st)")
if st == "AA" { // at one iteration change completely the list
print (" --> check 0: \(slist[0]), and 2: \(slist[2])")
slist.append ("KLM")
slist.insert(st+"XX", at:0) // shift the elements in the array
slist[2]="bc" // replace some elements to come
print (" --> check again 0: \(slist[0]), and 2: \(slist[2])")
slist.remove(at:3)
slist.remove(at:3)
slist.remove(at:1) // makes list shorter
}
}
print (slist)
This works very well, the iteration being made on the values [ "AA", "BC", "DE", "FG" ] even if after the first iteration the array is completely changed to ["AAXX", "bc", "KLM"]
I wanted to know if I can safely rely on this behavior. Unfortunately, the language guide does not tell anything about iterating on a collection when the collection is modified. And the for .. in section doesn't address this question either. So:
Can I safely rely on a guarantee about this iteration behavior provided in the language specifications ?
Or am I simply lucky with the current version of Swift 5.4? In this case, is there any clue in the language specification that one cannot take it for granted? And is there a performance overhead for this iteration behavior (e.g. some copy) compared to indexed iteration?
The documentation for IteratorProtocol says "whenever you use a for-in loop with an array, set, or any other collection or sequence, you’re using that type’s iterator." So, we are guaranteed that a for in loop is going to be using .makeIterator() and .next() which is defined most generally on Sequence and IteratorProtocol respectively.
The documentation for Sequence says that "the Sequence protocol makes no requirement on conforming types regarding whether they will be destructively consumed by iteration." As a consequence, this means that an iterator for a Sequence is not required to make a copy, and so I do not think that modifying a sequence while iterating over it is, in general, safe.
This same caveat does not occur in the documentation for Collection, but I also don't think there is any guarantee that the iterator makes a copy, and so I do not think that modifying a collection while iterating over it is, in general, safe.
But, most collection types in Swift are structs with value semantics or copy-on-write semantics. I'm not really sure where the documentation for this is, but this link does say that "in Swift, Array, String, and Dictionary are all value types... You don’t need to do anything special — such as making an explicit copy — to prevent other code from modifying that data behind your back." In particular, this means that for Array, .makeIterator() cannot hold a reference to your array because the iterator for Array does not have to "do anything special" to prevent other code (i.e. your code) from modifying the data it holds.
We can explore this in more detail. The Iterator type of Array is defined as type IndexingIterator<Array<Element>>. The documentation IndexingIterator says that it is the default implementation of the iterator for collections, so we can assume that most collections will use this. We can see in the source code for IndexingIterator that it holds a copy of its collection
#frozen
public struct IndexingIterator<Elements: Collection> {
#usableFromInline
internal let _elements: Elements
#usableFromInline
internal var _position: Elements.Index
#inlinable
#inline(__always)
/// Creates an iterator over the given collection.
public /// #testable
init(_elements: Elements) {
self._elements = _elements
self._position = _elements.startIndex
}
...
}
and that the default .makeIterator() simply creates this copy.
extension Collection where Iterator == IndexingIterator<Self> {
/// Returns an iterator over the elements of the collection.
#inlinable // trivial-implementation
#inline(__always)
public __consuming func makeIterator() -> IndexingIterator<Self> {
return IndexingIterator(_elements: self)
}
}
Although you might not want to trust this source code, the documentation for library evolution claims that "the #inlinable attribute is a promise from the library developer that the current definition of a function will remain correct when used with future versions of the library" and the #frozen also means that the members of IndexingIterator cannot change.
Altogether, this means that any collection type with value semantics and an IndexingIterator as its Iterator must make a copy when using using for in loops (at least until the next ABI break, which should be a long-way off). Even then, I don't think Apple is likely to change this behavior.
In Conclusion
I don't know of any place that it is explicitly spelled out in the docs "you can modify an array while you iterate over it, and the iteration will proceed as if you made a copy" but that's also the kind of language that probably shouldn't be written down as writing such code could definitely confuse a beginner.
However, there is enough documentation lying around which says that a for in loop just calls .makeIterator() and that for any collection with value semantics and the default iterator type (for example, Array), .makeIterator() makes a copy and so cannot be influenced by code inside the loop. Further, because Array and some other types like Set and Dictionary are copy-on-write, modifying these collections inside a loop will have a one-time copy penalty as the body of the loop will not have a unique reference to its storage (because the iterator will). This is the exact same penalty that modifying the collection outside the loop with have if you don’t have a unique reference to the storage.
Without these assumptions, you aren't guaranteed safety, but you might have it anyway in some circumstances.
Edit:
I just realized we can create some cases where this is unsafe for sequences.
import Foundation
/// This is clearly fine and works as expected.
print("Test normal")
for _ in 0...10 {
let x: NSMutableArray = [0,1,2,3]
for i in x {
print(i)
}
}
/// This is also okay. Reassigning `x` does not mutate the reference that the iterator holds.
print("Test reassignment")
for _ in 0...10 {
var x: NSMutableArray = [0,1,2,3]
for i in x {
x = []
print(i)
}
}
/// This crashes. The iterator assumes that the last index it used is still valid, but after removing the objects, there are no valid indices.
print("Test removal")
for _ in 0...10 {
let x: NSMutableArray = [0,1,2,3]
for i in x {
x.removeAllObjects()
print(i)
}
}
/// This also crashes. `.enumerated()` gets a reference to `x` which it expects will not be modified behind its back.
print("Test removal enumerated")
for _ in 0...10 {
let x: NSMutableArray = [0,1,2,3]
for i in x.enumerated() {
x.removeAllObjects()
print(i)
}
}
The fact that this is an NSMutableArray is important because this type has reference semantics. Since NSMutableArray conforms to Sequence, we know that mutating a sequence while iterating over it is not safe, even when using .enumerated().
The slist.enumerate() create a new instance of EnumeratedSequence<[String]>
To create an instance of EnumeratedSequence, call enumerated() on a sequence or collection. The following example enumerates the elements of an array. reference
If you remove the .enumerate() produce the same result, any st has the old value. This occurs because the for-in loop generates a new instance of IndexingIterator<[String]>.
Whenever you use a for-in loop with an array, set, or any other collection or sequence, you’re using that type’s iterator. Swift uses a sequence’s or collection’s iterator internally to enable the for-in loop language construct. reference
About the questions:
You would be able to remove all the elements and still perform the loop safe because a new instance is generated to perform the interactions.
Swift uses the iterator internally to enable for-in then there's no overhead to compare. Logically that the larger the array the performance will be affected.

Swift semantics regarding dictionary access

I'm currently reading the excellent Advanced Swift book from objc.io, and I'm running into something that I don't understand.
If you run the following code in a playground, you will notice that when modifying a struct contained in a dictionary a copy is made by the subscript access, but then it appears that the original value in the dictionary is replaced by the copy. I don't understand why. What exactly is happening ?
Also, is there a way to avoid the copy ? According to the author of the book, there isn't, but I just want to be sure.
import Foundation
class Buffer {
let id = UUID()
var value = 0
func copy() -> Buffer {
let new = Buffer()
new.value = self.value
return new
}
}
struct COWStruct {
var buffer = Buffer()
init() { print("Creating \(buffer.id)") }
mutating func change() -> String {
if isKnownUniquelyReferenced(&buffer) {
buffer.value += 1
return "No copy \(buffer.id)"
} else {
let newBuffer = buffer.copy()
newBuffer.value += 1
buffer = newBuffer
return "Copy \(buffer.id)"
}
}
}
var array = [COWStruct()]
array[0].buffer.value
array[0].buffer.id
array[0].change()
array[0].buffer.value
array[0].buffer.id
var dict = ["key": COWStruct()]
dict["key"]?.buffer.value
dict["key"]?.buffer.id
dict["key"]?.change()
dict["key"]?.buffer.value
dict["key"]?.buffer.id
// If the above `change()` was made on a copy, why has the original value changed ?
// Did the copied & modified struct replace the original struct in the dictionary ?
dict["key"]?.change() // Copy
is semantically equivalent to:
if var value = dict["key"] {
value.change() // Copy
dict["key"] = value
}
The value is pulled out of the dictionary, unwrapped into a temporary, mutated, and then placed back into the dictionary.
Because there's now two references to the underlying buffer (one from our local temporary value, and one from the COWStruct instance in the dictionary itself) – we're forcing a copy of the underlying Buffer instance, as it's no longer uniquely referenced.
So, why doesn't
array[0].change() // No Copy
do the same thing? Surely the element should be pulled out of the array, mutated and then stuck back in, replacing the previous value?
The difference is that unlike Dictionary's subscript which comprises of a getter and setter, Array's subscript comprises of a getter and a special accessor called mutableAddressWithPinnedNativeOwner.
What this special accessor does is return a pointer to the element in the array's underlying buffer, along with an owner object to ensure that the buffer isn't deallocated from under the caller. Such an accessor is called an addressor, as it deals with addresses.
Therefore when you say:
array[0].change()
you're actually mutating the actual element in the array directly, rather than a temporary.
Such an addressor cannot be directly applied to Dictionary's subscript because it returns an Optional, and the underlying value isn't stored as an optional. So it currently has to be unwrapped with a temporary, as we cannot return a pointer to the value in storage.
In Swift 3, you can avoid copying your COWStruct's underlying Buffer by removing the value from the dictionary before mutating the temporary:
if var value = dict["key"] {
dict["key"] = nil
value.change() // No Copy
dict["key"] = value
}
As now only the temporary has a view onto the underlying Buffer instance.
And, as #dfri points out in the comments, this can be reduced down to:
if var value = dict.removeValue(forKey: "key") {
value.change() // No Copy
dict["key"] = value
}
saving on a hashing operation.
Additionally, for convenience, you may want to consider making this into an extension method:
extension Dictionary {
mutating func withValue<R>(
forKey key: Key, mutations: (inout Value) throws -> R
) rethrows -> R? {
guard var value = removeValue(forKey: key) else { return nil }
defer {
updateValue(value, forKey: key)
}
return try mutations(&value)
}
}
// ...
dict.withValue(forKey: "key") {
$0.change() // No copy
}
In Swift 4, you should be able to use the values property of Dictionary in order to perform a direct mutation of the value:
if let index = dict.index(forKey: "key") {
dict.values[index].change()
}
As the values property now returns a special Dictionary.Values mutable collection that has a subscript with an addressor (see SE-0154 for more info on this change).
However, currently (with the version of Swift 4 that ships with Xcode 9 beta 5), this still makes a copy. This is due to the fact that both the Dictionary and Dictionary.Values instances have a view onto the underlying buffer – as the values computed property is just implemented with a getter and setter that passes around a reference to the dictionary's buffer.
So when calling the addressor, a copy of the dictionary's buffer is triggered, therefore leading to two views onto COWStruct's Buffer instance, therefore triggering a copy of it upon change() being called.
I have filed a bug over this here. (Edit: This has now been fixed on master with the unofficial introduction of generalised accessors using coroutines, so will be fixed in Swift 5 – see below for more info).
In Swift 4.1, Dictionary's subscript(_:default:) now uses an addressor, so we can efficiently mutate values so long as we supply a default value to use in the mutation.
For example:
dict["key", default: COWStruct()].change() // No copy
The default: parameter uses #autoclosure such that the default value isn't evaluated if it isn't needed (such as in this case where we know there's a value for the key).
Swift 5 and beyond
With the unofficial introduction of generalised accessors in Swift 5, two new underscored accessors have been introduced, _read and _modify which use coroutines in order to yield a value back to the caller. For _modify, this can be an arbitrary mutable expression.
The use of coroutines is exciting because it means that a _modify accessor can now perform logic both before and after the mutation. This allows them to be much more efficient when it comes to copy-on-write types, as they can for example deinitialise the value in storage while yielding a temporary mutable copy of the value that's uniquely referenced to the caller (and then reinitialising the value in storage upon control returning to the callee).
The standard library has already updated many previously inefficient APIs to make use of the new _modify accessor – this includes Dictionary's subscript(_:) which can now yield a uniquely referenced value to the caller (using the deinitialisation trick I mentioned above).
The upshot of these changes means that:
dict["key"]?.change() // No copy
will be able to perform an mutation of the value without having to make a copy in Swift 5 (you can even try this out for yourself with a master snapshot).

Struct cannot have a stored property that references itself [duplicate]

Reference cycles in Swift occur when properties of reference types have strong ownership of each other (or with closures).
Is there, however, a possibility of having reference cycles with value types only?
I tried this in playground without succes (Error: Recursive value type 'A' is not allowed).
struct A {
var otherA: A? = nil
init() {
otherA = A()
}
}
A reference cycle (or retain cycle) is so named because it indicates a cycle in the object graph:
Each arrow indicates one object retaining another (a strong reference). Unless the cycle is broken, the memory for these objects will never be freed.
When capturing and storing value types (structs and enums), there is no such thing as a reference. Values are copied, rather than referenced, although values can hold references to objects.
In other words, values can have outgoing arrows in the object graph, but no incoming arrows. That means they can't participate in a cycle.
As the compiler told you, what you're trying to do is illegal. Exactly because this is a value type, there's no coherent, efficient way to implement what you're describing. If a type needs to refer to itself (e.g., it has a property that is of the same type as itself), use a class, not a struct.
Alternatively, you can use an enum, but only in a special, limited way: an enum case's associated value can be an instance of that enum, provided the case (or the entire enum) is marked indirect:
enum Node {
case None(Int)
indirect case left(Int, Node)
indirect case right(Int, Node)
indirect case both(Int, Node, Node)
}
Disclaimer: I'm making an (hopefully educated) guess about the inner workings of the Swift compiler here, so apply grains of salt.
Aside from value semantics, ask yourself: Why do we have structs? What is the advantage?
One advantage is that we can (read: want to) store them on the stack (resp. in an object frame), i.e. just like primitive values in other languages. In particular, we don't want to allocate dedicated space on the heap to point to. That makes accessing struct values more efficient: we (read: the compiler) always knows where exactly in memory it finds the value, relative to the current frame or object pointer.
In order for that to work out for the compiler, it needs to know how much space to reserve for a given struct value when determining the structure of the stack or object frame. As long as struct values are trees of fixed size (disregarding outgoing references to objects; they point to the heap are not of interest for us), that is fine: the compiler can just add up all the sizes it finds.
If you had a recursive struct, this fails: you can implement lists or binary trees in this way. The compiler can not figure out statically how to store such values in memory, so we have to forbid them.
Nota bene: The same reasoning explains why structs are pass-by-value: we need them to physically be at their new context.
Quick and easy hack workaround: just embed it in an array.
struct A {
var otherA: [A]? = nil
init() {
otherA = [A()]
}
}
You normally cannot have a reference cycle with value types simply because Swift normally doesn't allow references to value types. Everything is copied.
However, if you're curious, you actually can induce a value-type reference cycle by capturing self in a closure.
The following is an example. Note that the MyObject class is present merely to illustrate the leak.
class MyObject {
static var objCount = 0
init() {
MyObject.objCount += 1
print("Alloc \(MyObject.objCount)")
}
deinit {
print("Dealloc \(MyObject.objCount)")
MyObject.objCount -= 1
}
}
struct MyValueType {
var closure: (() -> ())?
var obj = MyObject()
init(leakMe: Bool) {
if leakMe {
closure = { print("\(self)") }
}
}
}
func test(leakMe leakMe: Bool) {
print("Creating value type. Leak:\(leakMe)")
let _ = MyValueType(leakMe: leakMe)
}
test(leakMe: true)
test(leakMe: false)
Output:
Creating value type. Leak:true
Alloc 1
Creating value type. Leak:false
Alloc 2
Dealloc 2
Is there, however, a possibility of having reference cycles with value types only?
Depends on what you mean with "value types only".
If you mean completely no reference including hidden ones inside, then the answer is NO. To make a reference cycle, you need at least one reference.
But in Swift, Array, String or some other types are value types, which may contain references inside their instances. If your "value types" includes such types, the answer is YES.

Reference cycles with value types?

Reference cycles in Swift occur when properties of reference types have strong ownership of each other (or with closures).
Is there, however, a possibility of having reference cycles with value types only?
I tried this in playground without succes (Error: Recursive value type 'A' is not allowed).
struct A {
var otherA: A? = nil
init() {
otherA = A()
}
}
A reference cycle (or retain cycle) is so named because it indicates a cycle in the object graph:
Each arrow indicates one object retaining another (a strong reference). Unless the cycle is broken, the memory for these objects will never be freed.
When capturing and storing value types (structs and enums), there is no such thing as a reference. Values are copied, rather than referenced, although values can hold references to objects.
In other words, values can have outgoing arrows in the object graph, but no incoming arrows. That means they can't participate in a cycle.
As the compiler told you, what you're trying to do is illegal. Exactly because this is a value type, there's no coherent, efficient way to implement what you're describing. If a type needs to refer to itself (e.g., it has a property that is of the same type as itself), use a class, not a struct.
Alternatively, you can use an enum, but only in a special, limited way: an enum case's associated value can be an instance of that enum, provided the case (or the entire enum) is marked indirect:
enum Node {
case None(Int)
indirect case left(Int, Node)
indirect case right(Int, Node)
indirect case both(Int, Node, Node)
}
Disclaimer: I'm making an (hopefully educated) guess about the inner workings of the Swift compiler here, so apply grains of salt.
Aside from value semantics, ask yourself: Why do we have structs? What is the advantage?
One advantage is that we can (read: want to) store them on the stack (resp. in an object frame), i.e. just like primitive values in other languages. In particular, we don't want to allocate dedicated space on the heap to point to. That makes accessing struct values more efficient: we (read: the compiler) always knows where exactly in memory it finds the value, relative to the current frame or object pointer.
In order for that to work out for the compiler, it needs to know how much space to reserve for a given struct value when determining the structure of the stack or object frame. As long as struct values are trees of fixed size (disregarding outgoing references to objects; they point to the heap are not of interest for us), that is fine: the compiler can just add up all the sizes it finds.
If you had a recursive struct, this fails: you can implement lists or binary trees in this way. The compiler can not figure out statically how to store such values in memory, so we have to forbid them.
Nota bene: The same reasoning explains why structs are pass-by-value: we need them to physically be at their new context.
Quick and easy hack workaround: just embed it in an array.
struct A {
var otherA: [A]? = nil
init() {
otherA = [A()]
}
}
You normally cannot have a reference cycle with value types simply because Swift normally doesn't allow references to value types. Everything is copied.
However, if you're curious, you actually can induce a value-type reference cycle by capturing self in a closure.
The following is an example. Note that the MyObject class is present merely to illustrate the leak.
class MyObject {
static var objCount = 0
init() {
MyObject.objCount += 1
print("Alloc \(MyObject.objCount)")
}
deinit {
print("Dealloc \(MyObject.objCount)")
MyObject.objCount -= 1
}
}
struct MyValueType {
var closure: (() -> ())?
var obj = MyObject()
init(leakMe: Bool) {
if leakMe {
closure = { print("\(self)") }
}
}
}
func test(leakMe leakMe: Bool) {
print("Creating value type. Leak:\(leakMe)")
let _ = MyValueType(leakMe: leakMe)
}
test(leakMe: true)
test(leakMe: false)
Output:
Creating value type. Leak:true
Alloc 1
Creating value type. Leak:false
Alloc 2
Dealloc 2
Is there, however, a possibility of having reference cycles with value types only?
Depends on what you mean with "value types only".
If you mean completely no reference including hidden ones inside, then the answer is NO. To make a reference cycle, you need at least one reference.
But in Swift, Array, String or some other types are value types, which may contain references inside their instances. If your "value types" includes such types, the answer is YES.

Why Choose Struct Over Class?

Playing around with Swift, coming from a Java background, why would you want to choose a Struct instead of a Class? Seems like they are the same thing, with a Struct offering less functionality. Why choose it then?
According to the very popular WWDC 2015 talk Protocol Oriented Programming in Swift (video, transcript), Swift provides a number of features that make structs better than classes in many circumstances.
Structs are preferable if they are relatively small and copiable because copying is way safer than having multiple references to the same instance as happens with classes. This is especially important when passing around a variable to many classes and/or in a multithreaded environment. If you can always send a copy of your variable to other places, you never have to worry about that other place changing the value of your variable underneath you.
With Structs, there is much less need to worry about memory leaks or multiple threads racing to access/modify a single instance of a variable. (For the more technically minded, the exception to that is when capturing a struct inside a closure because then it is actually capturing a reference to the instance unless you explicitly mark it to be copied).
Classes can also become bloated because a class can only inherit from a single superclass. That encourages us to create huge superclasses that encompass many different abilities that are only loosely related. Using protocols, especially with protocol extensions where you can provide implementations to protocols, allows you to eliminate the need for classes to achieve this sort of behavior.
The talk lays out these scenarios where classes are preferred:
Copying or comparing instances doesn't make sense (e.g., Window)
Instance lifetime is tied to external effects (e.g., TemporaryFile)
Instances are just "sinks"--write-only conduits to external state (e.g.CGContext)
It implies that structs should be the default and classes should be a fallback.
On the other hand, The Swift Programming Language documentation is somewhat contradictory:
Structure instances are always passed by value, and class
instances are always passed by reference. This means that they are
suited to different kinds of tasks. As you consider the data
constructs and functionality that you need for a project, decide
whether each data construct should be defined as a class or as a
structure.
As a general guideline, consider creating a structure when one or more
of these conditions apply:
The structure’s primary purpose is to encapsulate a few relatively simple data values.
It is reasonable to expect that the encapsulated values will be copied rather than referenced when you assign or pass around an
instance of that structure.
Any properties stored by the structure are themselves value types, which would also be expected to be copied rather than referenced.
The structure does not need to inherit properties or behavior from another existing type.
Examples of good candidates for structures include:
The size of a geometric shape, perhaps encapsulating a width property and a height property, both of type Double.
A way to refer to ranges within a series, perhaps encapsulating a start property and a length property, both of type Int.
A point in a 3D coordinate system, perhaps encapsulating x, y and z properties, each of type Double.
In all other cases, define a class, and create instances of that class
to be managed and passed by reference. In practice, this means that
most custom data constructs should be classes, not structures.
Here it is claiming that we should default to using classes and use structures only in specific circumstances. Ultimately, you need to understand the real world implication of value types vs. reference types and then you can make an informed decision about when to use structs or classes. Also, keep in mind that these concepts are always evolving and The Swift Programming Language documentation was written before the Protocol Oriented Programming talk was given.
This answer was originally about difference in performance between struct and class. Unfortunately there are too much controversy around the method I used for measuring. I left it below, but please don't read too much into it. I think after all these years, it has become clear in Swift community that struct (along with enum) is always preferred due to its simplicity and safety.
If performance is important to your app, do measure it yourself. I still think most of the time struct performance is superior, but the best answer is just as someone said in the comments: it depends.
=== OLD ANSWER ===
Since struct instances are allocated on stack, and class instances are allocated on heap, structs can sometimes be drastically faster.
However, you should always measure it yourself and decide based on your unique use case.
Consider the following example, which demonstrates 2 strategies of wrapping Int data type using struct and class. I am using 10 repeated values are to better reflect real world, where you have multiple fields.
class Int10Class {
let value1, value2, value3, value4, value5, value6, value7, value8, value9, value10: Int
init(_ val: Int) {
self.value1 = val
self.value2 = val
self.value3 = val
self.value4 = val
self.value5 = val
self.value6 = val
self.value7 = val
self.value8 = val
self.value9 = val
self.value10 = val
}
}
struct Int10Struct {
let value1, value2, value3, value4, value5, value6, value7, value8, value9, value10: Int
init(_ val: Int) {
self.value1 = val
self.value2 = val
self.value3 = val
self.value4 = val
self.value5 = val
self.value6 = val
self.value7 = val
self.value8 = val
self.value9 = val
self.value10 = val
}
}
func + (x: Int10Class, y: Int10Class) -> Int10Class {
return IntClass(x.value + y.value)
}
func + (x: Int10Struct, y: Int10Struct) -> Int10Struct {
return IntStruct(x.value + y.value)
}
Performance is measured using
// Measure Int10Class
measure("class (10 fields)") {
var x = Int10Class(0)
for _ in 1...10000000 {
x = x + Int10Class(1)
}
}
// Measure Int10Struct
measure("struct (10 fields)") {
var y = Int10Struct(0)
for _ in 1...10000000 {
y = y + Int10Struct(1)
}
}
func measure(name: String, #noescape block: () -> ()) {
let t0 = CACurrentMediaTime()
block()
let dt = CACurrentMediaTime() - t0
print("\(name) -> \(dt)")
}
Code can be found at https://github.com/knguyen2708/StructVsClassPerformance
UPDATE (27 Mar 2018):
As of Swift 4.0, Xcode 9.2, running Release build on iPhone 6S, iOS 11.2.6, Swift Compiler setting is -O -whole-module-optimization:
class version took 2.06 seconds
struct version took 4.17e-08 seconds (50,000,000 times faster)
(I no longer average multiple runs, as variances are very small, under 5%)
Note: the difference is a lot less dramatic without whole module optimization. I'd be glad if someone can point out what the flag actually does.
UPDATE (7 May 2016):
As of Swift 2.2.1, Xcode 7.3, running Release build on iPhone 6S, iOS 9.3.1, averaged over 5 runs, Swift Compiler setting is -O -whole-module-optimization:
class version took 2.159942142s
struct version took 5.83E-08s (37,000,000 times faster)
Note: as someone mentioned that in real-world scenarios, there will be likely more than 1 field in a struct, I have added tests for structs/classes with 10 fields instead of 1. Surprisingly, results don't vary much.
ORIGINAL RESULTS (1 June 2014):
(Ran on struct/class with 1 field, not 10)
As of Swift 1.2, Xcode 6.3.2, running Release build on iPhone 5S, iOS 8.3, averaged over 5 runs
class version took 9.788332333s
struct version took 0.010532942s (900 times faster)
OLD RESULTS (from unknown time)
(Ran on struct/class with 1 field, not 10)
With release build on my MacBook Pro:
The class version took 1.10082 sec
The struct version took 0.02324 sec (50 times faster)
Similarities between structs and classes.
I created gist for this with simple examples.
https://github.com/objc-swift/swift-classes-vs-structures
And differences
1. Inheritance.
structures can't inherit in swift. If you want
class Vehicle{
}
class Car : Vehicle{
}
Go for an class.
2. Pass By
Swift structures pass by value and class instances pass by reference.
Contextual Differences
Struct constant and variables
Example (Used at WWDC 2014)
struct Point{
var x = 0.0;
var y = 0.0;
}
Defines a struct called Point.
var point = Point(x:0.0,y:2.0)
Now if I try to change the x. Its a valid expression.
point.x = 5
But if I defined a point as constant.
let point = Point(x:0.0,y:2.0)
point.x = 5 //This will give compile time error.
In this case entire point is immutable constant.
If I used a class Point instead this is a valid expression. Because in a class immutable constant is the reference to the class itself not its instance variables (Unless those variables defined as constants)
Assuming that we know Struct is a value type and Class is a reference type.
If you don't know what a value type and a reference type are then see What's the difference between passing by reference vs. passing by value?
Based on mikeash's post:
... Let's look at some extreme, obvious examples first. Integers are
obviously copyable. They should be value types. Network sockets can't
be sensibly copied. They should be reference types. Points, as in x, y
pairs, are copyable. They should be value types. A controller that
represents a disk can't be sensibly copied. That should be a reference
type.
Some types can be copied but it may not be something you want to
happen all the time. This suggests that they should be reference
types. For example, a button on the screen can conceptually be copied.
The copy will not be quite identical to the original. A click on the
copy will not activate the original. The copy will not occupy the same
location on the screen. If you pass the button around or put it into a
new variable you'll probably want to refer to the original button, and
you'd only want to make a copy when it's explicitly requested. That
means that your button type should be a reference type.
View and window controllers are a similar example. They might be
copyable, conceivably, but it's almost never what you'd want to do.
They should be reference types.
What about model types? You might have a User type representing a user
on your system, or a Crime type representing an action taken by a
User. These are pretty copyable, so they should probably be value
types. However, you probably want updates to a User's Crime made in
one place in your program to be visible to other parts of the program.
This suggests that your Users should be managed by some sort of user
controller which would be a reference type. e.g
struct User {}
class UserController {
var users: [User]
func add(user: User) { ... }
func remove(userNamed: String) { ... }
func ...
}
Collections are an interesting case. These include things like arrays
and dictionaries, as well as strings. Are they copyable? Obviously. Is
copying something you want to happen easily and often? That's less
clear.
Most languages say "no" to this and make their collections reference
types. This is true in Objective-C and Java and Python and JavaScript
and almost every other language I can think of. (One major exception
is C++ with STL collection types, but C++ is the raving lunatic of the
language world which does everything strangely.)
Swift said "yes," which means that types like Array and Dictionary and
String are structs rather than classes. They get copied on assignment,
and on passing them as parameters. This is an entirely sensible choice
as long as the copy is cheap, which Swift tries very hard to
accomplish.
...
I personally don't name my classes like that. I usually name mine UserManager instead of UserController but the idea is the same
In addition don't use class when you have to override each and every instance of a function ie them not having any shared functionality.
So instead of having several subclasses of a class. Use several structs that conform to a protocol.
Another reasonable case for structs is when you want to do a delta/diff of your old and new model. With references types you can't do that out of the box. With value types the mutations are not shared.
Here are some other reasons to consider:
structs get an automatic initializer that you don't have to maintain in code at all.
struct MorphProperty {
var type : MorphPropertyValueType
var key : String
var value : AnyObject
enum MorphPropertyValueType {
case String, Int, Double
}
}
var m = MorphProperty(type: .Int, key: "what", value: "blah")
To get this in a class, you would have to add the initializer, and maintain the intializer...
Basic collection types like Array are structs. The more you use them in your own code, the more you will get used to passing by value as opposed to reference. For instance:
func removeLast(var array:[String]) {
array.removeLast()
println(array) // [one, two]
}
var someArray = ["one", "two", "three"]
removeLast(someArray)
println(someArray) // [one, two, three]
Apparently immutability vs. mutability is a huge topic, but a lot of smart folks think immutability -- structs in this case -- is preferable. Mutable vs immutable objects
Some advantages:
automatically threadsafe due to not being shareable
uses less memory due to no isa and refcount (and in fact is stack allocated generally)
methods are always statically dispatched, so can be inlined (though #final can do this for classes)
easier to reason about (no need to "defensively copy" as is typical with NSArray, NSString, etc...) for the same reason as thread safety
Structs are value type and Classes are reference type
Value types are faster than Reference types
Value type instances are safe in a multi-threaded environment as
multiple threads can mutate the instance without having to worry
about the race conditions or deadlocks
Value type has no references unlike reference type; therefore there
is no memory leaks.
Use a value type when:
You want copies to have independent state, the data will be used in
code across multiple threads
Use a reference type when:
You want to create shared, mutable state.
Further information could be also found in the Apple documentation
https://docs.swift.org/swift-book/LanguageGuide/ClassesAndStructures.html
Additional Information
Swift value types are kept in the stack. In a process, each thread has its own stack space, so no other thread will be able to access your value type directly. Hence no race conditions, locks, deadlocks or any related thread synchronization complexity.
Value types do not need dynamic memory allocation or reference counting, both of which are expensive operations. At the same time methods on value types are dispatched statically. These create a huge advantage in favor of value types in terms of performance.
As a reminder here is a list of Swift
Value types:
Struct
Enum
Tuple
Primitives (Int, Double, Bool etc.)
Collections (Array, String, Dictionary, Set)
Reference types:
Class
Anything coming from NSObject
Function
Closure
Structure is much more faster than Class. Also, if you need inheritance then you must use Class. Most important point is that Class is reference type whereas Structure is value type. for example,
class Flight {
var id:Int?
var description:String?
var destination:String?
var airlines:String?
init(){
id = 100
description = "first ever flight of Virgin Airlines"
destination = "london"
airlines = "Virgin Airlines"
}
}
struct Flight2 {
var id:Int
var description:String
var destination:String
var airlines:String
}
now lets create instance of both.
var flightA = Flight()
var flightB = Flight2.init(id: 100, description:"first ever flight of Virgin Airlines", destination:"london" , airlines:"Virgin Airlines" )
now lets pass these instance to two functions which modify the id, description, destination etc..
func modifyFlight(flight:Flight) -> Void {
flight.id = 200
flight.description = "second flight of Virgin Airlines"
flight.destination = "new york"
flight.airlines = "Virgin Airlines"
}
also,
func modifyFlight2(flight2: Flight2) -> Void {
var passedFlight = flight2
passedFlight.id = 200
passedFlight.description = "second flight from virgin airlines"
}
so,
modifyFlight(flight: flightA)
modifyFlight2(flight2: flightB)
now if we print the flightA's id and description, we get
id = 200
description = "second flight of Virgin Airlines"
Here, we can see the id and description of FlightA is changed because the parameter passed to the modify method actually points to the memory address of flightA object(reference type).
now if we print the id and description of FLightB instance we get,
id = 100
description = "first ever flight of Virgin Airlines"
Here we can see that the FlightB instance is not changed because in modifyFlight2 method, actual instance of Flight2 is passes rather than reference ( value type).
Answering the question from the perspective of value types vs reference types, from this Apple blog post it would appear very simple:
Use a value type [e.g. struct, enum] when:
Comparing instance data with == makes sense
You want copies to have independent state
The data will be used in code across multiple threads
Use a reference type [e.g. class] when:
Comparing instance identity with === makes sense
You want to create shared, mutable state
As mentioned in that article, a class with no writeable properties will behave identically with a struct, with (I will add) one caveat: structs are best for thread-safe models -- an increasingly imminent requirement in modern app architecture.
Struct vs Class
[Stack vs Heap]
[Value vs Reference type]
Struct is more preferable. But Struct does not solve all issues by default. Usually you can hear that value type is allocated on stack, but it is not always true. Only local variables are allocated on stack
//simple blocks
struct ValueType {}
class ReferenceType {}
struct StructWithRef {
let ref1 = ReferenceType()
}
class ClassWithRef {
let ref1 = ReferenceType()
}
func foo() {
//simple blocks
let valueType1 = ValueType()
let refType1 = ReferenceType()
//RetainCount
//StructWithRef
let structWithRef1 = StructWithRef()
let structWithRef1Copy = structWithRef1
print("original:", CFGetRetainCount(structWithRef1 as CFTypeRef)) //1
print("ref1:", CFGetRetainCount(structWithRef1.ref1)) //2 (originally 3)
//ClassWithRef
let classWithRef1 = ClassWithRef()
let classWithRef1Copy = classWithRef1
print("original:", CFGetRetainCount(classWithRef1)) //2 (originally 3)
print("ref1:", CFGetRetainCount(classWithRef1.ref1)) //1 (originally 2)
}
*You should not use/rely on retainCount, because it does not say useful information
To check stack or heap
During compiling SIL(Swift Intermediate Language) can optimize you code
swiftc -emit-silgen -<optimization> <file_name>.swift
//e.g.
swiftc -emit-silgen -Onone file.swift
//emit-silgen -> emit-sil(is used in any case)
//-emit-silgen Emit raw SIL file(s)
//-emit-sil Emit canonical SIL file(s)
//optimization: O, Osize, Onone. It is the same as Swift Compiler - Code Generation -> Optimization Level
There you can find alloc_stack(allocation on stack) and alloc_box(allocation on heap)
[Optimization Level(SWIFT_OPTIMIZATION_LEVEL)]
With classes you get inheritance and are passed by reference, structs do not have inheritance and are passed by value.
There are great WWDC sessions on Swift, this specific question is answered in close detail in one of them. Make sure you watch those, as it will get you up to speed much more quickly then the Language guide or the iBook.
I wouldn't say that structs offer less functionality.
Sure, self is immutable except in a mutating function, but that's about it.
Inheritance works fine as long as you stick to the good old idea that every class should be either abstract or final.
Implement abstract classes as protocols and final classes as structs.
The nice thing about structs is that you can make your fields mutable without creating shared mutable state because copy on write takes care of that :)
That's why the properties / fields in the following example are all mutable, which I would not do in Java or C# or swift classes.
Example inheritance structure with a bit of dirty and straightforward usage at the bottom in the function named "example":
protocol EventVisitor
{
func visit(event: TimeEvent)
func visit(event: StatusEvent)
}
protocol Event
{
var ts: Int64 { get set }
func accept(visitor: EventVisitor)
}
struct TimeEvent : Event
{
var ts: Int64
var time: Int64
func accept(visitor: EventVisitor)
{
visitor.visit(self)
}
}
protocol StatusEventVisitor
{
func visit(event: StatusLostStatusEvent)
func visit(event: StatusChangedStatusEvent)
}
protocol StatusEvent : Event
{
var deviceId: Int64 { get set }
func accept(visitor: StatusEventVisitor)
}
struct StatusLostStatusEvent : StatusEvent
{
var ts: Int64
var deviceId: Int64
var reason: String
func accept(visitor: EventVisitor)
{
visitor.visit(self)
}
func accept(visitor: StatusEventVisitor)
{
visitor.visit(self)
}
}
struct StatusChangedStatusEvent : StatusEvent
{
var ts: Int64
var deviceId: Int64
var newStatus: UInt32
var oldStatus: UInt32
func accept(visitor: EventVisitor)
{
visitor.visit(self)
}
func accept(visitor: StatusEventVisitor)
{
visitor.visit(self)
}
}
func readEvent(fd: Int) -> Event
{
return TimeEvent(ts: 123, time: 56789)
}
func example()
{
class Visitor : EventVisitor
{
var status: UInt32 = 3;
func visit(event: TimeEvent)
{
print("A time event: \(event)")
}
func visit(event: StatusEvent)
{
print("A status event: \(event)")
if let change = event as? StatusChangedStatusEvent
{
status = change.newStatus
}
}
}
let visitor = Visitor()
readEvent(1).accept(visitor)
print("status: \(visitor.status)")
}
In Swift, a new programming pattern has been introduced known as Protocol Oriented Programming.
Creational Pattern:
In swift, Struct is a value types which are automatically cloned. Therefore we get the required behavior to implement the prototype pattern for free.
Whereas classes are the reference type, which is not automatically cloned during the assignment. To implement the prototype pattern, classes must adopt the NSCopying protocol.
Shallow copy duplicates only the reference, that points to those objects whereas deep copy duplicates object’s reference.
Implementing deep copy for each reference type has become a tedious task. If classes include further reference type, we have to implement prototype pattern for each of the references properties. And then we have to actually copy the entire object graph by implementing the NSCopying protocol.
class Contact{
var firstName:String
var lastName:String
var workAddress:Address // Reference type
}
class Address{
var street:String
...
}
By using structs and enums, we made our code simpler since we don’t have to implement the copy logic.
Many Cocoa APIs require NSObject subclasses, which forces you into using class. But other than that, you can use the following cases from Apple’s Swift blog to decide whether to use a struct / enum value type or a class reference type.
https://developer.apple.com/swift/blog/?id=10
One point not getting attention in these answers is that a variable holding a class vs a struct can be a let while still allowing changes on the object's properties, while you cannot do this with a struct.
This is useful if you don't want the variable to ever point to another object, but still need to modify the object, i.e. in the case of having many instance variables that you wish to update one after another. If it is a struct, you must allow the variable to be reset to another object altogether using var in order to do this, since a constant value type in Swift properly allows zero mutation, while reference types (classes) don't behave this way.
As struct are value types and you can create the memory very easily which stores into stack.Struct can be easily accessible and after the scope of the work it's easily deallocated from the stack memory through pop from the top of the stack.
On the other hand class is a reference type which stores in heap and changes made in one class object will impact to other object as they are tightly coupled and reference type.All members of a structure are public whereas all the members of a class are private.
The disadvantages of struct is that it can't be inherited .
Structure and class are user defied data types
By default, structure is a public whereas class is private
Class implements the principal of encapsulation
Objects of a class are created on the heap memory
Class is used for re usability whereas structure is used for grouping
the data in the same structure
Structure data members cannot be initialized directly but they can be
assigned by the outside the structure
Class data members can be initialized directly by the parameter less
constructor and assigned by the parameterized constructor