Postgres array of doubles - postgresql

I have a big array of doubles, I am not sure which datatype to choose best. I have seen integer[] but not a double one.
Also, idea is that I dont want to search over the array or query specific indexes I just one to save and download it at once.
Could you please recommend datatype to store a double array.

Based on your comment above, you're stating that your use case is restricted to simply loading/saving the whole matrix at once? Could you investigate compressing your matricies and storing the compressed representation? This is basically a separate topic on compression. However, whatever compress scheme you choose may result in an easier mechanism for storing the content.

had the same problem, for me it worked: float8[] and I was generating postgres tables with liquibase
https://www.postgresql.org/docs/current/datatype.html

Related

POSTGRESQL JSONB column for storing follower-following relationship [duplicate]

Imagine a web form with a set of check boxes (any or all of them can be selected). I chose to save them in a comma separated list of values stored in one column of the database table.
Now, I know that the correct solution would be to create a second table and properly normalize the database. It was quicker to implement the easy solution, and I wanted to have a proof-of-concept of that application quickly and without having to spend too much time on it.
I thought the saved time and simpler code was worth it in my situation, is this a defensible design choice, or should I have normalized it from the start?
Some more context, this is a small internal application that essentially replaces an Excel file that was stored on a shared folder. I'm also asking because I'm thinking about cleaning up the program and make it more maintainable. There are some things in there I'm not entirely happy with, one of them is the topic of this question.
In addition to violating First Normal Form because of the repeating group of values stored in a single column, comma-separated lists have a lot of other more practical problems:
Can’t ensure that each value is the right data type: no way to prevent 1,2,3,banana,5
Can’t use foreign key constraints to link values to a lookup table; no way to enforce referential integrity.
Can’t enforce uniqueness: no way to prevent 1,2,3,3,3,5
Can’t delete a value from the list without fetching the whole list.
Can't store a list longer than what fits in the string column.
Hard to search for all entities with a given value in the list; you have to use an inefficient table-scan. May have to resort to regular expressions, for example in MySQL:
idlist REGEXP '[[:<:]]2[[:>:]]' or in MySQL 8.0: idlist REGEXP '\\b2\\b'
Hard to count elements in the list, or do other aggregate queries.
Hard to join the values to the lookup table they reference.
Hard to fetch the list in sorted order.
Hard to choose a separator that is guaranteed not to appear in the values
To solve these problems, you have to write tons of application code, reinventing functionality that the RDBMS already provides much more efficiently.
Comma-separated lists are wrong enough that I made this the first chapter in my book: SQL Antipatterns, Volume 1: Avoiding the Pitfalls of Database Programming.
There are times when you need to employ denormalization, but as #OMG Ponies mentions, these are exception cases. Any non-relational “optimization” benefits one type of query at the expense of other uses of the data, so be sure you know which of your queries need to be treated so specially that they deserve denormalization.
"One reason was laziness".
This rings alarm bells. The only reason you should do something like this is that you know how to do it "the right way" but you have come to the conclusion that there is a tangible reason not to do it that way.
Having said this: if the data you are choosing to store this way is data that you will never need to query by, then there may be a case for storing it in the way you have chosen.
(Some users would dispute the statement in my previous paragraph, saying that "you can never know what requirements will be added in the future". These users are either misguided or stating a religious conviction. Sometimes it is advantageous to work to the requirements you have before you.)
There are numerous questions on SO asking:
how to get a count of specific values from the comma separated list
how to get records that have only the same 2/3/etc specific value from that comma separated list
Another problem with the comma separated list is ensuring the values are consistent - storing text means the possibility of typos...
These are all symptoms of denormalized data, and highlight why you should always model for normalized data. Denormalization can be a query optimization, to be applied when the need actually presents itself.
In general anything can be defensible if it meets the requirements of your project. This doesn't mean that people will agree with or want to defend your decision...
In general, storing data in this way is suboptimal (e.g. harder to do efficient queries) and may cause maintenance issues if you modify the items in your form. Perhaps you could have found a middle ground and used an integer representing a set of bit flags instead?
Yes, I would say that it really is that bad. It's a defensible choice, but that doesn't make it correct or good.
It breaks first normal form.
A second criticism is that putting raw input results directly into a database, without any validation or binding at all, leaves you open to SQL injection attacks.
What you're calling laziness and lack of SQL knowledge is the stuff that neophytes are made of. I'd recommend taking the time to do it properly and view it as an opportunity to learn.
Or leave it as it is and learn the painful lesson of a SQL injection attack.
I needed a multi-value column, it could be implemented as an xml field
It could be converted to a comma delimited as necessary
querying an XML list in sql server using Xquery.
By being an xml field, some of the concerns can be addressed.
With CSV: Can't ensure that each value is the right data type: no way to prevent 1,2,3,banana,5
With XML: values in a tag can be forced to be the correct type
With CSV: Can't use foreign key constraints to link values to a lookup table; no way to enforce referential integrity.
With XML: still an issue
With CSV: Can't enforce uniqueness: no way to prevent 1,2,3,3,3,5
With XML: still an issue
With CSV: Can't delete a value from the list without fetching the whole list.
With XML: single items can be removed
With CSV: Hard to search for all entities with a given value in the list; you have to use an inefficient table-scan.
With XML: xml field can be indexed
With CSV: Hard to count elements in the list, or do other aggregate queries.**
With XML: not particularly hard
With CSV: Hard to join the values to the lookup table they reference.**
With XML: not particularly hard
With CSV: Hard to fetch the list in sorted order.
With XML: not particularly hard
With CSV: Storing integers as strings takes about twice as much space as storing binary integers.
With XML: storage is even worse than a csv
With CSV: Plus a lot of comma characters.
With XML: tags are used instead of commas
In short, using XML gets around some of the issues with delimited list AND can be converted to a delimited list as needed
Yes, it is that bad. My view is that if you don't like using relational databases then look for an alternative that suits you better, there are lots of interesting "NOSQL" projects out there with some really advanced features.
Well I've been using a key/value pair tab separated list in a NTEXT column in SQL Server for more than 4 years now and it works. You do lose the flexibility of making queries but on the other hand, if you have a library that persists/derpersists the key value pair then it's not a that bad idea.
I would probably take the middle ground: make each field in the CSV into a separate column in the database, but not worry much about normalization (at least for now). At some point, normalization might become interesting, but with all the data shoved into a single column you're gaining virtually no benefit from using a database at all. You need to separate the data into logical fields/columns/whatever you want to call them before you can manipulate it meaningfully at all.
If you have a fixed number of boolean fields, you could use a INT(1) NOT NULL (or BIT NOT NULL if it exists) or CHAR (0) (nullable) for each. You could also use a SET (I forget the exact syntax).

Memory issues with large amounts of data stored as nested cells in MATLAB

I have large amounts of data stored as nested cells in .mat files. My biggest problem right now is the load times for accessing these files, but I'm wondering if the underlying problem is that I came up with an inefficient way for storing the data and I should restructure it to be smaller.
The full file consists of a cell aray:
Hemi{1,h} where there are 52 versions of h
.{n,p} where there are 85 versions of n and up to ~100 versions of p
.Variable where there are 10 variables, each with ~2500 values
This full file ate up all my memory, so I saved it in parts, aka:
Hemi1.mat=Hemi{1,1}
Hemi2.mat=Hemi{1,2}
etc.
The next step for this application is to load each file, determine which part of it is an appropriate solution (I need Hemi{1,h}.{n,p}.Var1, Hemi{1,h}.{n,p}.Var2, and Hemi{1,h}.{n,p}.Var3 for this, but I still need to keep track of the other Variables), save the solution, then close the file and move to the next one.
Is there a faster way to load these files?
Is the problem less my dataset and more how I've chosen to store it? Is there a better alternative?
That is quite a lot of data. I have a few suggestions that you could look into. The first is to see if you can change the datatypes to something like Categorical Objects. They are way more memory efficient. Also if you are storing strings as your final data this can be quite heavy storage wise.
Second you could look into HDF5 file storage. I hear it is a nice way to store structured data.
You could finally try to convert your {n,p} arrays into Table structures. I am not sure if this is better for memory, but tables are nice to work with and it may help you out. (Depending on your version of Matlab you may not have tables :P).
I hope this helps!
-Kyle

What are the differences between Tables and Categorical Arrays, and cell and struct arrays?

In the newest version of MATLAB there are two new data types: Tables and Categorical Arrays.
Table is a new data type suitable for holding data and metadata, and can be used with mixed-type tabular data that are often stored as columns in a text file or in a spreadsheet. It consists of rows and column-oriented variables.
Categorical arrays are useful for holding categorical data - which have values from a finite list of discrete categories.
In previous versions I would have handled these use cases using cell and struct arrays. What are the differences between these and the new data types?
I haven't upgraded yet so I can't play around but based on this video and this article I can already see some advantages. They're not necessarily adding functionality that you couldn't do before, but rather just taking the hassle out of it. Using readtable over xlsread is immediately appealing to me. Being able to access columns by name rather than just by index is great, I do it in other languages often. In a table where column order doesn't really matter (unlike a matrix) it's really convenient to be able to address a column by it's name instead of having to know the column order. Also you can merge table using the join function which wasn't that easy to do with cell arrays before. I see that you can name the rows too, I didn't see what advantage that gives you and I can't play around but I know in some languages (like PANDAS in Python and I think in R as well) naming rows means you can work with time series data with different series that are not completely overlapping and not have to worry about alignment. I hope this is the case in Matlab too! Categorical arrays also look like just an extra layer of convenience, kind of like an enum. You never actually need a enum but it just makes development more pleasant.
Anyway that's just my two cents, I probably won't get an opportunity to play around with them any time soon but I look forward to using them when I do need them.
I use the table format to organize different input/output cases in my data, where the result may come from different tables. Main advantages compared to struct or cell array:
convenient table functions such as join, innerjoin, outerjoin
the use of fields <> more robust programming than arrays
data format is easy to export/import (e.g. delimited .txt file) <> no fprintf()
the data file can be opened in excel/Calc (libreoffice) <> no .mat

Checksum field in PostgreSQL to content comparison

I have a field in a table with large content (text or binary data). If I want to know if another text is equals this one, I can use a checksum to compare the two texts. I can define this field as UNIQUE to avoid repeated content too.
My doubt is if I create a checksum field, this comparison will speed up, so PostgreSQL already does this (without need programmer intervention) or I need do this manually?
EDIT: What is better, create a checksum for a TEXT field, use a checksum for it or the two ways are the same thing?
There is no default "checksum" for large columns in PostgreSQL, you will have to implement one yourself.
Reply to comment
Hash indexes provide fast performance for equality checks. And they are updated automatically. But they are not fully integrated in PostgreSQL (yet), so their use is discouraged - read the manual.
And you cannot query the values and use them in your application for instance. You could do that with a checksum column, but you need to add an index for performance if your table is big and maintain the column. I would use a trigger BEFORE INSERT OR UPDATE for that.
So, a hash index may or may not be for you. #A.H.'s idea certainly fits the problem ...
You might read the Indexes Types manual, because basically you want to do the same as a hash-index but with your bare hands. So you might read up on the pros and cons of a hash index in PostgreSQL.

How to reduce the size of an sqlite3 database for iphone?

edit: many thanks for all the answers. Here are the results after applying the optimisations so far:
Switching to sorting the characters and run length encoding - new DB size 42M
Dropping the indexes on the booleans - new DB size 33M
The really nice part is this hasn't required any changes in the iphone code
I have an iphone application with a large dictionary held in sqlite format (read only). I'm looking for ideas to reduce the size of the DB file, which is currently very large.
Here is the number of entries and resulting size of the sqlite DB:
franks-macbook:DictionaryMaker frank$ ls -lh dictionary.db
-rw-r--r-- 1 frank staff 59M 8 Oct 23:08 dictionary.db
franks-macbook:DictionaryMaker frank$ wc -l dictionary.txt
453154 dictionary.txt
...an average of about 135 bytes per entry.
Here is my DB schema:
create table words (word text primary key, sowpods boolean, twl boolean, signature text)
create index sowpods_idx on words(sowpods)
create index twl_idx on words(twl)
create index signature_idx on words(signature)
Here is some sample data:
photoengrave|1|1|10002011000001210101010000
photoengraved|1|1|10012011000001210101010000
photoengraver|1|1|10002011000001210201010000
photoengravers|1|1|10002011000001210211010000
photoengraves|1|1|10002011000001210111010000
photoengraving|1|1|10001021100002210101010000
The last field represents the letter frequencies for anagram retrieval (each position is in the range 0..9). The two booleans represent sub dictionaries.
I need to do queries such as:
select signature from words where word = 'foo'
select word from words where signature = '10001021100002210101010000' order by word asc
select word from words where word like 'foo' order by word asc
select word from words where word = 'foo' and (sowpods='1' or twl='1')
One idea I have is to encode the letter frequencies more efficiently, e.g. binary encode them as a blob (perhaps with RLE as there are many zeros?). Any ideas for how best to achieve this, or other ideas to reduce the size? I am building the DB in ruby, and reading it on the phone in objective C.
Also is there any way to get stats on the DB so I can see what is using the most space?
Have you tried typing the "vacuum" command to make sure you don't have extra space in the db you forgot to reclame?
Remove the indexes on sowpods and twl -- they are probably not helping your query times and are definitely taking lots of space.
You can get stats on the database using sqlite3_analyzer from the SQLite downloads page.
As a totally different approach, you could try using a bloom filter instead of a comprehensive database. Basically, a bloom filter consists of a bunch of hash functions, each of which is associated with a bitfield. For each legal word, each hash function is evaluated, and the corresponding bit in the corresponding bit field is set. Drawback is it's theoretically possible to get false positives, but those can be minimized/practically eliminated with enough hashes. Plus side is a huge space savings.
I'm not clear on all the use cases for the signature field but it seems like storing an alphabetized version of the word instead would be beneficial.
The creator of SQLite sells a version of SQLite that includes database compression (and encryption). This would be perfect.
Your best bet is to use compression, which unfortunately SQLite does not support natively at this point. Luckily, someone took the time to develop a compression extension for it which could be what you need.
Otherwise I'd recommend storing your data mostly in compressed format and uncompressing on the fly.
As a text field, signature is currently using at least 26 * 8 bytes per entry (208 bytes) but if you were to pack the data into a bitfield, you could probably get away with only 3 bits per letter (reducing your maximum frequency per letter to 7). That would mean you could pack the entire signature in 26 * 3 bits = 78 bits = 10 bytes. Even if you used 4 bits per letter (for a maximum frequency of 15 per letter) you would only use 104 bits (13 bytes).
EDIT: After a bit more thought, I think 4 bits per letter (instead of 3) would be a better idea because it would make the binary math easier.
EDIT2: Reading through the docs on SQLite data types, it seems that you might be able to just make the "signature" field span 26 columns of type INTEGER and SQLite will do the right thing and only use as many bits as required to store the value.
Do I reckon correctly that you have about 450K words like that in your database ?
I've got no clue about iPhone, neither serious about sqlitem but... as long as sqlite does not allow for a way to save the file as gz right away (it maybe already does internally? no, does not look like that when you say it's about 135 b per entry. not even with both indexes), I would move away from the table approach, save it "manually" in a dictionary approach compression and build the rest on the fly and in memory. That should perform VERY well on your type of data.
Wait... Are you using that signature to allow for fulltextsearching or mistyping recogition ? Would full text search on sqlite not obsolete that field ?
As noted storing "Signature" more efficiently seems like a good idea.
However, it also seems like you could gain a ton of space savings by using some kind of lookup table for words - since you seem to be taking a root word and then appending "er", "ed", "es", etc why not have a column with a numeric ID that references a root word from a separate lookup table, and then a separate column with a numeric ID that references a table of common word suffixes that would be appended to the base word.
If there were any tricks around storing shorthand versions of signatures for multiple entries with a single root word, you could also employ those to reduce the size of stored signatures (not sure what algorithm is producing those values)
This also seems to make a lot of sense to me as you have the "word" column as a primary key, but do not even index it - just create a separate numeric column that is the primary ID for the table.
mhmm... an iPhone... doesn't it have a permanent data connection ?
I think this is where a webapplication/webservice can jump in snugly.
Move most of your business logic to the webserver (he's gonna have real SQL with FTS and looooots of memory) and fetch that info online to the client on the device.
As mentioned elsewhere, lose the indexes on the boolean columns, they will almost certainly be slower (if used at all) than a table scan and are going to use space needlessly.
I'd consider applying a simple compression to the words, Huffman coding is pretty good for this sort of thing. Also, I'd look at the signatures: sort the columns in letter frequency order and don't bother storing trailing zeroes, which can be implied. I guess you could Huffman-encode those, too.
Always assuming your encoded strings don't upset SQLite, of course.