I'm loading the same amount of data (~100kb) on both my local server and a test Amazon EC2 server, but the response is 2x slower on EC2. Both are running Apache 2 and MongoDB on the same machine. On my local server, the response is about 209ms versus approximately 455ms on EC2.
I've setup a simple query and AJAX call that grabs point data to display on the map based on the current viewport of the device.
How can I debug this issue? How can I make it as faster as my local server? I even tried experimenting with different types of instances to make sure the specs are the same, but no luck. I also realize it could be because of network latency.
Local computer specs:
Intel Core i5 # 3.30GHz
8GB RAM
64-bit Windows 8
Amazon EC2 specs (m4.large):
2.4 GHz Intel Xeon Haswell (2 vCPUs)
8GB RAM
Amazon Linux
A remote query to EC2 is unlikely to return the result of the AJAX query as fast as your local server because it has network latency, while your local server does not. Measure the time in your AJAX handler from the start of the query to the point where it is ready to return data to get a meaningful baseline for comparison.
MongoDB is very sensitive to data being in RAM vs on disk. Depending on how you configured your EC2 instance, and on your local hardware, chances are pretty good that your local hardware is faster. EC2 instances can be configured to use SSD storage, and you can configure a guaranteed IOPS figure.
Is the 100KB the size of the result set, or the amount of data needed to form the result set? If you process 4GB of data down to get a 100KB result set, there's a good chance that disk IO is involved. If the amount of data you need to pull is small, repeat the test a few times to ensure data is entirely in RAM.
Finally, if both local and EC2 are pulling data from RAM, there's a good chance that your local CPU core is just faster than the EC2 CPU core, and that your RAM access is faster as well. EC2 is designed to provide low-cost commodity hardware. Developer setups are often much faster.
If you cannot account for the speed differences given the factors above, update your question with the time measurements that exclude network latency and provide more detailed specifications about your hardware. Update the question to indicate whether the data you are retrieving from MongoDB should be entirely in RAM, given it's size and the amount of RAM on your instance.
Related
RAM- 4GB,
PROCESSOR-i3 5010ucpu #2.10 GHz
64 bit OS
can Cassandra and MongoDB be installed in such a laptop? Will it run successfully?
The hardware configuration proposed does not meet the minimum requirements. For Cassandra, the documentation requests a minimum of 8GB of RAM and at least 2 cores.
MongoDB's documentation also states that it will need at least 2 real cores or one multi-core physical CPU. With 4GB in RAM, the WiredTiger will allocate 1.5GB for the cache. Please also note that MongoDB will require changes in BIOS to allow memory interleaving to enable Non-Uniform Access Memory, a.k.a. NUMA, such changes will impact the performance of the laptop for other processes.
Will it run successfully?
This will depend on the workload expected to be executed; there are documented examples where Cassandra was installed on a Raspberry Pi array, which since the design it was expected to have slow performance and have a limited amount of data that can be held in the cluster.
If you are looking to have a small sandbox to start using these databases there are other options, MongoDB has a service named Atlas, with a model of a database as a service, it offers a free tier for a 3-node replica and up to 512Mb of storage. For Cassandra there are similar options, AWS offers in the free tier a small cluster of their Managed Cassandra Service (MCS), Datastax is also planning to offer similar services with Constellation
We are running load test against an application that hits a Postgres database.
During the test, we suddenly get an increase in error rate.
After analysing the platform and application behaviour, we notice that:
CPU of Postgres RDS is 100%
Freeable memory drops on this same server
And in the postgres logs, we see:
2018-08-21 08:19:48 UTC::#:[XXXXX]:LOG: server process (PID XXXX) was terminated by signal 9: Killed
After investigating and reading documentation, it appears one possibility is linux oomkiller running having killed the process.
But since we're on RDS, we cannot access system logs /var/log messages to confirm.
So can somebody:
confirm that oom killer really runs on AWS RDS for Postgres
give us a way to check this ?
give us a way to compute max memory used by Postgres based on number of connections ?
I didn't find the answer here:
http://postgresql.freeideas.cz/server-process-was-terminated-by-signal-9-killed/
https://www.postgresql.org/message-id/CAOR%3Dd%3D25iOzXpZFY%3DSjL%3DWD0noBL2Fio9LwpvO2%3DSTnjTW%3DMqQ%40mail.gmail.com
https://www.postgresql.org/message-id/04e301d1fee9%24537ab200%24fa701600%24%40JetBrains.com
AWS maintains a page with best practices for their RDS service: https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/CHAP_BestPractices.html
In terms of memory allocation, that's the recommendation:
An Amazon RDS performance best practice is to allocate enough RAM so
that your working set resides almost completely in memory. To tell if
your working set is almost all in memory, check the ReadIOPS metric
(using Amazon CloudWatch) while the DB instance is under load. The
value of ReadIOPS should be small and stable. If scaling up the DB
instance class—to a class with more RAM—results in a dramatic drop in
ReadIOPS, your working set was not almost completely in memory.
Continue to scale up until ReadIOPS no longer drops dramatically after
a scaling operation, or ReadIOPS is reduced to a very small amount.
For information on monitoring a DB instance's metrics, see Viewing DB Instance Metrics.
Also, that's their recommendation to troubleshoot possible OS issues:
Amazon RDS provides metrics in real time for the operating system (OS)
that your DB instance runs on. You can view the metrics for your DB
instance using the console, or consume the Enhanced Monitoring JSON
output from Amazon CloudWatch Logs in a monitoring system of your
choice. For more information about Enhanced Monitoring, see Enhanced
Monitoring
There's a lot of good recommendations there, including query tuning.
Note that, as a last resort, you could switch to Aurora, which is compatible with PostgreSQL:
Aurora features a distributed, fault-tolerant, self-healing storage
system that auto-scales up to 64TB per database instance. Aurora
delivers high performance and availability with up to 15 low-latency
read replicas, point-in-time recovery, continuous backup to Amazon S3,
and replication across three Availability Zones.
EDIT: talking specifically about your issue w/ PostgreSQL, check this Stack Exchange thread -- they had a long connection with auto commit set to false.
We had a long connection with auto commit set to false:
connection.setAutoCommit(false)
During that time we were doing a lot
of small queries and a few queries with a cursor:
statement.setFetchSize(SOME_FETCH_SIZE)
In JDBC you create a connection object, and from that connection you
create statements. When you execute the statments you get a result
set.
Now, every one of these objects needs to be closed, but if you close
statement, the entry set is closed, and if you close the connection
all the statements are closed and their result sets.
We were used to short living queries with connections of their own so
we never closed statements assuming the connection will handle the
things once it is closed.
The problem was now with this long transaction (~24 hours) which never
closed the connection. The statements were never closed. Apparently,
the statement object holds resources both on the server that runs the
code and on the PostgreSQL database.
My best guess to what resources are left in the DB is the things
related to the cursor. The statements that used the cursor were never
closed, so the result set they returned never closed as well. This
meant the database didn't free the relevant cursor resources in the
DB, and since it was over a huge table it took a lot of RAM.
Hope it helps!
TLDR: If you need PostgreSQL on AWS and you need rock solid stability, run PostgreSQL on EC2 (for now) and do some kernel tuning for overcommitting
I'll try to be concise, but you're not the only one who has seen this and it is a known (internal to Amazon) issue with RDS and Aurora PostgreSQL.
OOM Killer on RDS/Aurora
The OOM killer does run on RDS and Aurora instances because they are backed by linux VMs and OOM is an integral part of the kernel.
Root Cause
The root cause is that the default Linux kernel configuration assumes that you have virtual memory (swap file or partition), but EC2 instances (and the VMs that back RDS and Aurora) do not have virtual memory by default. There is a single partition and no swap file is defined. When linux thinks it has virtual memory, it uses a strategy called "overcommitting" which means that it allows processes to request and be granted a larger amount of memory than the amount of ram the system actually has. Two tunable parameters govern this behavior:
vm.overcommit_memory - governs whether the kernel allows overcommitting (0=yes=default)
vm.overcommit_ratio - what percent of system+swap the kernel can overcommit. If you have 8GB of ram and 8GB of swap, and your vm.overcommit_ratio = 75, the kernel will grant up to 12GB or memory to processes.
We set up an EC2 instance (where we could tune these parameters) and the following settings completely stopped PostgreSQL backends from getting killed:
vm.overcommit_memory = 2
vm.overcommit_ratio = 75
vm.overcommit_memory = 2 tells linux not to overcommit (work within the constraints of system memory) and vm.overcommit_ratio = 75 tells linux not to grant requests for more than 75% of memory (only allow user processes to get up to 75% of memory).
We have an open case with AWS and they have committed to coming up with a long-term fix (using kernel tuning params or cgroups, etc) but we don't have an ETA yet. If you are having this problem, I encourage you to open a case with AWS and reference case #5881116231 so they are aware that you are impacted by this issue, too.
In short, if you need stability in the near term, use PostgreSQL on EC2. If you must use RDS or Aurora PostgreSQL, you will need to oversize your instance (at additional cost to you) and hope for the best as oversizing doesn't guarantee you won't still have the problem.
I have read somewhere that MongoDB and Redis server shouldn't be executed in the same host because the way that Redis manages the memory damages MongoDb. This is before Docker.io. But now thing seems are pretty different or not? Is is convenient running Redis server and MongoDB on two different containers on the same host machine?
Docker does not change your hardware, also it is the OS that deals with resources which is not virtualized so the same rules as a normal hardware should apply here.
RAM
MongoDB and Redis don't share any memory. The problem of using the same host will be that you can run out of RAM with these two processes, you can put a max size for redis, you can probably do the same for MongoDB, it is mandatory.
If your sizing is good (MongoDB RAM + Redis RAM < Hardware RAM), you won't get any swap on disk for redis (which is absolutely what you want to prevent) but maybe mongodb cache won't be as good (not enough place for optimization). Less memory for redis is always a challenge if your data grows: beware of out of memory if the data size is unpredictable!
If you use backups with redis, it uses more RAM than its dataset to produce the dump, so beware of that. It implies also using IO.
IO
In this case (less RAM) mongo will do a lot more of IO to access data. Redis, depending on your backup policy, can use IO or not (your choice). Worst case: if you use AOF on redis, it is a lot of IO so maybe IO can become a bottleneck in this architecture. If you don't use backups with redis: you won't have problems. Also a SSD is a good choice for Mongo.
CPU
I don't know if MongoDB uses a lot of CPU, but redis most of the time does not except during backups. If you use backups with redis: try to have two CPU cores available for it (one for redis, one for backup task).
Network
It depends on your number of clients. But you should check the throughput / input load of your machine to see if you are not saturating (using monit for instance with alerts). Sometimes it is the bottleneck, not enought throughput in one machine!
Many of today's services, in particular Databases, are very aggressive consuming resources and are designed thinking they will (or should) be executed in a dedicated machine for them. MongoDB and Redis try to keep a lot of data in memory and will try to take the more memory they can for themselves. To avoid this services take all the memory of your host machine you can limit the maximum memory used by a container using -m="<number><optional unit>" in docker run. E.g.: docker run -d -m="2g" -p 27017:27017 --name mongodb dockerfile/mongodb
So you can control in an easy way the resource limits of your services, and run them in the same host with a fine grained control of the resources. Anyway it's important to consider that the performance of these services is designed thought that the resources of the host machine will be fully available for them. For example there are other databases as Cassandra that will consume a lot of memory, and furthermore, are designed to have sequential access writing to disk. In these cases Docker will let you to run limiting the resources used, but if you run multiple services in the same host the performance of them will decrease severely.
For my Drupal-based site, I have an architecture with 3 instances running nginx, postgresql, & solr, respectively. I'd like to install Memcached. Should I put it on the nginx or postgresql server? What are the performance implications?
Memcached is very light on CPU usage, so it is a great candidate to gobble up spare web server RAM. Also, you will scale out you web tier much more than your other tiers, and Memcached clustering can pool that RAM together into one logical cache.
If you have any spare RAM on the DB, it is almost always best for performance to let the DB gobble it up.
TL;DR Let DB have all of the RAM, colocate memcached on web tier.
Source: http://code.google.com/p/memcached/wiki/NewHardware
The best is to have a separate server (if you can do that).
Otherwise, it depends on your servers CPU & memory utilization and availability requirements. In general I would avoid running anything extra on a DB server machine...since DB is the foundation of the system and has to be available and performing well.
if your Solr server does not have high traffic an don't utilize much memory I'd put it in there. Memcached servers known to be light on CPU. Also you should estimate how much memory memcached instance will need...to make sure its enough on the server.
I have a PHP/Apache server with 12GB of RAM. I have been running Memcached on the same machine with 6GB of allotted RAM.
I wanted to run Memcached on a separate server (same datacenter, vlan, subnet), just as I do for MySQL. I setup a separate, identical server with the same memcached configuration.
I am seeing a roughly 10x page load time using Memcached from the remote server than what I get when running locally. I have primed both caches and I still have a 10x load time from remote.
I'm having trouble trouble shooting this.
You're loading 500kb of data per pageload, in all small keys? How many keys per pageload is this?
Latency to a remote server is very low, but running many roundtrips is still a bad idea. Memcached clients support multi-get operations, where you batch many keys into a single request/response with much lower latency.
Just for info, DDR3-1333 is about 10667 MB/s.
If you have, let's say, Gigabit ethernet, I guess it can explains some of the problems you are experiencing...